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PREFACE

This report is divided into three separate sections, each covering
a different phase of the research grant.

In Section I, "Optimal Feedback Control of Nuclear Reactor Systems,"
Optimal Control Theory is applied in order to derive analytical expressions
for compensating reactivity control which minimizes an integral quadratic
performance index containing system errors and éontrol motions. Various
linear and nonlinear reactor models are analyzed. Analog computer studies
show the effect of quasi-optimal feedback control in minimizing system
errors caused by internal disturbances.

In the second part of this report, 'Modeling with Liapunov Function,"
the Second Method of Liapunov is used to analyze the behavior of high-order
control systems. This is accomplished by finding a lower order model whose
response closely approximates the response of a higher order system. The
model is developed by '"matching'" the surfaces described by Liapunov functions

of the system and the model. 1In particular, a second-order model and a third-

order model are developed which provide good results for all systems inves-
tigated. The second-order model is shown to be similar to the model obtained
using phase margin techniques; and of greater importance, the third-order
model is shown to be a better approximation to systems than the phase margin
and the second order models. Thus this method serves to extend the practical
usefulness of the Second Method from mere stability analysis to relative
stability analysis (response of the system) and synthesis. Future effort
will be directed to the problems of finding nonlinear models for nonlinear

systems and specification of the accuracy of the model.



The third section, ''Linear System Design Using State Variable
Feedback,'" deals with the problems of the design of optimal feedback
systems for linear system subject to quadratic integral performance
criterion. In particular, two specific problems are attacked - the
regulator problem and the servomechanism problem. 1In the regulator
problem, the optimal design is shown to be a weighted constant feed-
back of all state variables. For the servomechanism problem, the
solution consists of a regulator plus a linear prefitter system.
Methods are presented for both the exact and approximate solution of
both problems. Future work will be involved with the finite interval-
of-control problem and the very important case when all of the state

variables are not measurable.
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SECTION I

OPTIMAL FEEDBACK CONTROL OF NUCLEAR REACTOR SYSTEMS
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ABSTRACT Iﬁ’gqgg

Linear optimal feedback control theory is employed
for the synthesls of several nuclear reactor models.
Optimal feedback control theory is presented from the
viewpoints of three commonly used techniques in modern
control theory, namely: the calculus of variations, Pon-
tryagin's maximum principle, and Bellman's dynamic
programming. For the synthesis of linear nuclear reactor
control problems, these three methods all yleld identical
optimal feedback controllers. For the synthesis of non-
linear nuclear reactor models, approximation techniques
based on either the maximum principle or dynamic program-
ming are required, and the two methods yield different
results.

The purpose of this study is to derive analytical
expressions for a compensating reactivity control which
minimizes an integral quadratic performance index contaln-
ing system errors and control motions. First-order llinear
and non-linear reactor systems are analyzed in order to
present as many facets of the optimal synthesis problem
as possible using simple examples. Higher-than-first-order
nuclear reactor models are analyzed for optimal linear and
quasi-optimal non-linear cases. Analog computer studies
show the effect of quasi-optimal feedback control in
minimizing system errors caused by internal dynamic

viii




disturbances. Time-varying feedback gain programs were
determined by means of the digital computer for two differ-
ent non-linear reactor models. The examples in this work

demonstrate the usefulness of optimal feedback control

/A4

synthesis for nuclear reactor systems.

ix




Chapter 1

INTRODUCTION AND OUTLINE

Introduction

In recent years a number of investigations have been
carrled out for the determination of optimal controls for
nuclear reactor systems (3, 8, 11, 15). In the period since
World War II, new mathematics of automatic control theory
have been developed at a rapidly increasing rate. Linear
control theory proved to be unsatisfactory for many types
of dynamic control systems, which contain characteristic
nonlinearities. Describing-function and phase-plane tech-
niques were developed for non-linear systems. With the
advent of analog and digital computers, very complicated
control systems can be evaluated through indirect simula-
tion. Most recently, time-domain control-system synthesis
has begun to play a very important role in automatic control.
To the englineer, the time-domain formulation is a realistic
framework in which to work and affords a wider range of
problems which may be handled.

This thesis is concerned primarily with the problems
of optimization of feedback control systems. The mathematics
of optimizetion in automatic control are probably the most
notable contributions to control theory of any. The idea
of optimization is surely not new and stems directly from

1



the classical mathematics of the calculus of variations.
However, the application of mathematical optimization in
automatic control 1s a significant divergence from the |
methods discussed in the previous paragraph. Optimization
theory attempts to yleld a system controller which exactly
incorporates all of the control system design constraints
directly without the need for trial—and-efror system analy-
sis. The recent theories of optimization used most frequent-
1y in control system design are those of Pontryagin (10) and
Bellman (1). Both of these theories give necessary and
sufficient conditions for the optimal control of linear
dynamic syétems and as expected the resulting controls are
identical. For non-linear systems Pontryagin's maximum
princlple gives necessary but not sufficient conditions for
the optimal control. On the contrary, however, Bellman's
dynamlc programming approach gives both necessary and
sufficient conditions for non-linear optimal control systems
also. For other than linear systems with unbounded control
regions, these theories involve sophisticated and complex
computational techniques.

The application of optimization techniques to
reactor dynamics is new and almost all studies in this area
have been published since 1961. One of the very first
studies of optimal processes in nuclear engineering was
done by Rosztoczy (11,12). Since then, other studies have

been continuously forthcoming. The general trend in all but



a few of these studies (5, 6) has been to obtain an open-

loop optimal control, for specific reactor systems, using fix-

ed performance criteria. In other words, the resulting control

law 1s satisfactory, only (a) if the reactor model exactly
(mathematically) represents the fixed physlcal reactor,
(b) for one set of initial conditions, and (c) where no
disturbances occur. Due to these practical restrictions
the usefulness of such 2 control is questionable.

Thus a practical need is established for a closed-
loop feedback control. 1In this work, the optimization
methods of Pontryagin's maximum principle and Bellman's
dynamic proéramming are applied to a wide range of reactor
kinetic problems to determine optimal feedback controllers.
The primary effort is to establish a compensating reactivity
feedback controller which minimizes, in an optimal sense,
deviations of the instantaneous reactor states (for example
neutron density and delayed neutron precursor densities)
from the desired or nominal states. Linear and non-linear
reactor systems are considered. 1In those cases where the
reactor dynamics considered are non-linear, approximate
methods of determining the optimal feedback control are used.
The resulting controller is nearly optimal, hereafter
termed "quasi-optimal", and increases in component com-
plexity as greater accuracy is required.

The usefulness of optimal feedback control for
nuclear reactors of all types is demonstrated in this

work. Current optimal control theories are developed to
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the extent that both deterministic and statistical control
systems can be handled (4). Statistical control systems
are characterized by uncertainties in measurements and/or
sporadic fluctuations of the physical states of the system.
At present only a limited class of problems can be evaluated
using statistical, or stochastic, optimal control theory.
Only deterministic, or exactly measurable, state variable

systems are considered here.

Outline of the Thesis

There are essentially two distinct parts in this
work. Chapters 1, 2, and 3 are of an introductory nature
and chapters 4, and 5 contaln examples of optimal feedback
control theory applied to specific reactor systems.

Chapter 2 discusses the mathematical theories of
optimal processes necessary to formulate and ultimately to
solve the feedback controller equations.» Brief discussions
are contalned in this chapter on the calculus of variations,
Pontryagin's maximum principle, and Bellman's dynamic
programming. Only generalizations, including necessary
and'sufficient conditions for optimization, are discussed.

In chapter 3 the specialization of optimal control
theory to the feedback control problem is considered.
Discussions of such topics as the selection of appropriate
performance criteria, control system stability, weighting
factor selection, and control system constraints are

included here. 1In addition the distinction between finite



5
‘and infinite control intervals are discussed. Most of the
background material necesséry for actual evaluation of the
control system is contained in this chapter. Of greatest
importance are the approximation techniques required when
applying the maximum principle or dynamic programming to
non-linear systems: i.e. in non-quadratic error criterion,
feedback-control synthesis.

A number of linear and non-linear first-order
reactor dynamic examples are presented in chapter 4. The
emphasis here is to demonstrate and compare, in a simple
way, the techniques developed. An effort is made to reveal
the complexity of the synthesis problem even for first-order
systems, thus giving some insight into the complexities of
higher-order, non-linear systems. All reactor examples in
this chapter are based on a steady state desired power level
(neutron density) and an infinite control interval. It
is felt that optiﬁal feedback control for ordinary power
reactors, operating in the steady state, is demonstrated
in this chapter.

In chapter 5 optimal feedback-control theory is
extended to reactor-dynamic systems of order greater than
first operating in other than the steady state condition.
First, a linear example of a reactor with delayed neutrons is
presented. The purpose here is to obtain constant fixed
optimal feedback gains for a reactor with six groups of

delayed neutrons that can be used for any reactor



straightforwardly. A comparison is made with a one de-
layed neutron group model; Next, Pontryagin's maximum
princliple 1s applied to obtain a quasi-optimal control

for a non-linear reactor model which undergoes a power
increase from 10 to 50 kilowatts in a finite time. Finally,
a quasi-optimal feedback control is determined for the
startup of a nuclear rocket engine. 1In this example two
control variables are optimized, discontinuities in nominal
controls are considered, and a finite control interval is
used. Analog computor simulation studies show the effec--

tiveness of quasi-optimal control clearly.



Chapter 2

OPTIMAL CONTROL THEORIES

Introduction and Notation

In this chapter the various theories of mathe-
matical optimlization are presented as the basis for optimal
feedback control system design. Three separate methods of
functional optimization are described; the calculus of
variations (2), Pontryagin's maximum principle (10), and
Bellman's dynamic programming(1l).

The similaritles of the calculus of varlations
and the maximum principle are many. The calculus of
variations, however, is more restrictive than the maximum
principle in the types of variational problems that can be
handled. The maximum principle extends the classlcal mathe-
matics of the calculus of variations to.include solutions
of problems with algebraic inequalitlies. Both theorles
have been proven to be necessary and sufficlent conditions
for optimization of linear problems and require the in-
direct solution of multi-point boundary-value problems.

For non-linear problems both are a necessary,
but not sufficlent, condition for optimization. Thé basic
theorems of the calculus of variations are first discussed.
The maximum principle is briefly outlined later, with the

main differences clearly emphasized.

7



In 1957, Bellman (1) formulated the theory of
dynamic programning. Whéreas the maximum principle and
the calculus of variations are classified as indirect
theorles, because the solution of two-point boundary-
value problems are required, dynamic programming is
classified as a direct method of optimization. In the
discrete form of this approach a single problem in N
variables 1s transformed into N problems, each ln'one
variable, and a direct search for the optimal "policy," or
solution, is required. Conceptually, this 1s a far easler
task than the solution of a multi-point boundary-value
problem. However, the number of computations required for a
final solution roughly increases exponentially with the
order of the problem, greatly restricting the solution of
any sizable problem. One very important aspect of dynamic
programming is that equality or inequallty constraints
on the problem reduce the reglions of search for the op-
timal policy and in principle simplify the solution.

This 1is in direct contrast with the maximum principle.

The generalized optimization problem can be
expressed fairly simply. Since dynamic control systems
are the only type of problem considered here, the nota-
tion and presentation is kept in accord with recent
control and nuclear reactor literature.

In control system design, the mathematics of the

device to be controlled are usually given, This




mathematical description is called the dynamic process.
In this work the dynamic processes are nuclear reactors.
The inputs of the dynamic vrocess are termed control
variables and are designated by the quantities uq(t),
u, (t), ..., uy (t), but in specific reactor examples
the quantity p(t), control reactivity, is sometimes
used. The dependent variables, or outputs, are termed
the response variables qq(t),qs(t),..., aq(t). These
response varliables may not always represent the physical
variables of the dynamic process, but in all cases are
functionally related to these variables. The actual physical
outputs of the dynamic process are termed state variables
X(t), x5(t), «.uy xy(t). In the dynamic process of a
reactor described by six or more groups of delayed neutrons,
where only the neutron density is measurable, the response
variable would be the neutron density and the state var-
1ab1es-wou1d'be,thé neutron density together with all the
delayed neutron precursor densities. The minimum number of
state variables which completely describe the dynamic process,
a set of first-order ordinary differential equations, is
equal to the order N of the system.

The optimal control problem is then defined as
the problem of controlling the dynamic process in such a
way that the performance of the system is optimum accord-
ing to some specified functional performance criterion.
Not only must the control optimize the performance criter-

lon, but it must do so without violating any of the physical



constraints to which the dynamic process 1s subjected.

Using column vectbr notation, the control, response,
and state varlables are represented as

-

._111(17)1 qu(t) .Xl(t).
ult) = Jua(t)| 5 ale) ={a(t)| 5 =x(t) =[x,(t) (2-1)
Lum(t). QQ(t)J LxN(t)J

In general the differential equations describing
the nuclear reactor dynamic processes are non-linear with

time-varying coefficients and can be represented as

dxe) = &(6) = £[x(t), ult),t] (2-2)

dat

which is identical with the set of first-order differential

equations

x, (t) = f‘i[z(t),g(t),t] 1 = 1,2,4004,N (2-3)

The physical design constraints, or saturation

constraints, on the control and state varlables of the

dynamic process are
u(t)eU(t) and x(t) € X(t) (2-4)

where the notation u(t) € U(t) designates that the vector
u(t) lies within, or on the boundary of, the closed region

U(t) of the control vector space.
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When the dynamic process is linear equation (2-2)
can be specialized by the notation
x(t) = A(t)x(t) + B(t)u(t) (2-5)

If the dynamic process 1is linear, saturation does not occur
and equations (2-4) are eliminated. The time-varying

matricies A(t) and B(t) are written in the form

(811 () a12(t) vu. aqy(t)]
A(t) _ 321(t) a22(t) eo o aZN(t)

LaN:L(t) aNz(t) coe aNN(t)
(2-6)
(511 (£) Byp(t) vun byy(t)]

b t) b t) ... b t
B(t) _ 21( ) 22( ) ZM( )

The performance criterion, that must be satisfied
for optimal control, is of prime importance and must be
selected carefully and realistically. The instantaneous
performance criterion, ens 1s calculated in terms of the

function
en(t) = hla(t),u(t), 4 (2-7)

The total system performance over the present and future
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time, t {T< T, during which control effort is applied to

the system is found by integrating equation (2-7)

e(t) =j;T h[g(?:),g(t),t] ar (2-8)

The response variables are always functions of the physical

state varlables and equations (2-7) and (2-8) are rewritten
en(t) = H[x(t),u(t), ¢ (2-9)

and  e(t) =j;T H[gc_(r).n('c),t] az (2-10)

Calculus of Variations

Three problems were responsible for the develop-
ment of the calculus of variations (2). The brachistochrone
problem is the simplest and involves determining a curve
between two fixed end-points such that a particle sliding
along the curve under the influence of gravity travels
between the end-points in minimum time. From this problem
evolved the basic conditions for the minimization of a
functional equation with no constraints.

| The problem of geodesics is concerned with mini-
mizing a functional equation subject to a finite constraint.
For example, 1t may be desired to find the curve of minimal
length 1lying on a given surface joining two fixed points on
that surface.

Finally, the isoperimetric problem is concerned

with finding a closed curve, of glven length, such that
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the enclosed surface area is maximum. This is the mini-
mization of a functional; subject to an integral constraint.

The basic equation that gives the necessary condition
for a maximum, or minimum, of an integral functional 1is
the Euler-lagrange equation. Equation (2-10), here repeated,
is an example of the integral functional considered in this

study.

e(t) =ftT H[;c_('c),g("c),*c]dr (2-11)

In deriving the Euler-Lagrange necessary condition, equation
(2-11) will be used in a modified form. Equation (2=2)
relates the control vector, u(t), to the state variable

vector, x(t), and its derivative, x(t). In other words
u(t) = g_[z(t),i(t),t] (2-12)
and upon substitution equation (2-11) becomes

e(t) =LT F[_}g(‘t),i('t),t]d’t (2-13)

The problem of minimizing this performance index
is the problem most frequently treated and 1is equivalent to
the brachistochrone problem when x(t) is a first-order
vector, i.e. the scaler x(t). In order to simplify the
derivation of the Euler-Lagrange equation, a first-order

process 1s considered initially.

e(t) =ftT F[X(T).i't('r),”c]dz- (2-14)
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The minimlzation of equation (2-24) is performed

by first assuming that the state variable is
x(7) = x*(7) +ox(7) (2-15)

where x*(7) is the function that actually minimizes equation
(2-14). Here OCis an arbitrarily small quantity and §x(T)
1s considered to be an arbitrary and unrestricted pertur-

bation. The derivative of x(T) is written
x(T) = x* (%) + C8x(T) (2-16)

Since (X 1s arbitrarily small the performance index is
perturbed infinitesimally about F[x*(t),i*(t),t]. If F
and its derivatives with respect to x(7) and x(T) are
continuous, the instantaneous performance criterion is

expanded in a Taylor series such that

F[x('t).fc("c).t] = F[x*("c),i*(t),z] +oc{QFLx*a§;zz§*gzz,tl 8x(z)
+ aF[x*gzzzi*gzz,*c[ Si(z)) + 008 {} + vee
ox* (7T

(2-17)
where a? 1s multiplied by all second partial derivatives

of F* with respect to x* and x* and where the notation

aF]x*gtz,i*izz,tI is equivalent to
dxXH (T
QFLx* (7)), x* (%) ,T AFLx (), x(x), T
ax*Zti bxit) =x¥* (2-18)

K=x%

i
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If the above series converges uniformly, the performance

index can be written

T
e(t) = e*(t) +/ oc{Sx('z) ale*(ftzti*g'cz,tl
t 2 x*(7
(2-19)
+ Ox(t) 3 Flx*(2),x*(%),7) }dt +oc2{...} Feuo
ai*!ﬂ

where e*(t) is the performance index evaluated at x(Z)=x*(7)
which minimizes e(t).

The first necessary condition for a minimum 1s

de(t) o o= 0 (2-20)
ooC =

when Ox(T) is an arbitrary function. The result of this
condition applied to equation (2-19) 1is

T
f Ox () aF[x*gr)zi*gez,tl + 0x () D F x*('z'z,i*(“cz,’tl}dt =0
t dx*(r 2 x* (T

(2-21)

Integrating the second term in this expression by parts

T L] .
dx(7) bF[x*Qt!ix*St),t!dt =
t d k¥ (v

T
- dx(x) d_[dFlx*(x) . x* (), xildr (2-22)
t ar 2 * (¥

+ 8x(0) 2rba(m) e (2),2]
dx* (7T

Equation (2-21) now becomes

il

T=T
T=t
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T
f Sx('t)ale*f'czz)'c*g’t),“cl - d_aF!x*(zzzi*gtz,tl} ax
t 2xX* (T - art dX¥* (T
) T= T (2-23)
+ 8x (%) aF[x*g‘czzx*Qtz,‘rI =
o x* (%

0
If the integrand of equation (2-23) is finite at =t and

T=t

T = T then the contribution at these end-points is due only
to the 214 term. This is the so-called transversality

condition

T=T
=0 (2-24)
T=t

dx (%) ale*gtE,i*gtz,tl
ox#* (v

Since Sx(t) 1s arbitrary, the integrand of equation
(2-23) must vanish independently of &x(%) on the interval
t<T<T. This 1s the Euler-Lagrange necessary condition

for optimality.

dF[x* (%), x*(x),x] - d_{aFl x*gtzzi*gtz,'tl} =0
X*{z) ax >FH(T

(2-25)
The appropriate boundary conditions are required for

explicit solutions of equation (2-25). If these boundary

conditions are specified as x*(t) and x*(t) or as x*(T)

and X*(T) the solution is the common initial-value or one-

point boundary-value problem. If, however, they are

specified as x*(t) anc x*(T) or as x*(t) and x*(T) then

the solution i1s termed a two-point boundary-value problem.
The initlal state of the dynamic process i1s always

fixed as

x{t) = x*(t) (2-26)
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which requires that 8x(t) = 0 for the transversallty
condition of equation (2-24). The minimizing function
x*(T) must have a fixed-point boundary condition, and

because &x(t) = 0, from equation (2-24)

dx(T) bF[x*STE,f{*(Tz,T! =0 (2~27)
O X¥(T

If this fixed-point boundary condition 1is
x(T) = x*(T) (2-28)

then 8x(T) = 0 and equation (2-27) is satisfled automatical~-
ly. If, however, x*(T) is free to assume any finite value
then the so-called free-point terminal-boundary condition

results and

SFlx*(T),x*(T),TJ =0 (2-29)
DX m‘§-1‘-l

because Ox(T) is arbitrary.

In order that the ilnstantaneous performance index

be a minimum value, one additional condition must be satisfiled.

This 1s known as the Legendre condition and is

azeétzl > 0 (2-30)
o X= 0

This 1s seen to be equivalent to the minimum of a function
given by differential calculus. The application of this
condition to equation (2-19), extended to include the product

of OC? times the 204 derivative terms, gives
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1T
Ef {Sx(t)ZQZFLx‘*grz’:‘c*grz,rl
t ox*(t
+ 2 8x(7) §x(v)_22F[x*(x),i* (), 7] (2-31)
IX* (T )ox* (T
+ 8x(7)2 22F[x* (%) ,x* (% ’t]}d’l‘>0
'ax’é'()"??‘i'l*r —

A sufficient condition for satisfying equation (2-31)
everywhere on t< T <T 1s a positive integrand for any

§x(t) and §x(T). A positive integrand is ensured when
2 2F| x*gt)z:'c*é'cz,“c] bZF[x*Et;,i*g’t)’I]
ox* (7 ax*(T) 2ax* (T
azF[x*S”cz,}'c*é‘L‘;,‘c] aZF[x*g'Cz’i*('zz,‘tl
ox* (T) dxX* (T dX* (T (2-32)

The sufficlent condition of equation (2-32) is very

restrictive and it is difficult, if not impossible, to
test a given performance criterion for sufficiency. For
these reasons some authors (7) tacitly assume that the
Euler-Lagrange necessary condition of equation (2-25) is
both a necessary and a sufficient condition for minimi-
zation. Functions which satisfy equation (2-32) are given
the term, strictly convex functlons.

There are many solutions of the Euler-Lagrange
equation which are integrable, but one such problem is of
special interest in the solution of the exact non-linear

optimal control for first-order dynamic processes. This
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solution will be considered here because of its frequent
application to the non-linear problems of chapter 4.

If the instantaneous performance criterion, F,
depends on x(t) and %(t) only and is independent of t,
the followlng solution results.,

F = F[x(t),x(¢)] (2-33)

The Euler-Lagrange equation can be shown to be
aFIx*(?E,i*gtzl - bZF!x*gtEri*§z;| x*(7)
ax* (7 ox*(T) o x* (v
- aZF(x*é'c;!fc*g'cz] %* (%) = 0
oax* (7~

When both sides of equation (2-34) are multiplied by the

(2-34)

function x*(t) the Euler-Lagrange equation becomes the

exact derivative

0=4d_ {F[x*('t).ic*("c)] - x*(7) bF!x*S?:z,fc*(‘tZ]} (2-35)
dt 2 X% (v

Consequently, the Euler-lagrange equation has the first
integral

{F[x*('c),i:*('t)] -i*(r)aF[x*(‘cz’fc*(’r)]}=C (2-36)
o x*(T

where C 1s the constant of integration. Thus the exact

optimal solution for x*(T) 1is
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x*(7) = Fle*(2), 5% (x)] - ¢
- D F[x* (%) x* (%) (2-37)
D x* (T

Equation (2-12) relates the optimal control of this first-
order dynamic process to the above equation.

The generalized extension of the calculus of vari-
ations to Nth-order dynamic processes 1is presented 1in terms
of Lagrange multipliers. The results directly follow the
previous development. The problem is left in terms of
minimizing the original functional equation (2-10), here

repeated,

ev) = | ’ B[x(2),u(),7]dz (2-38)

which 1s subject to the constraints of the dynamic process
x(t) = i[z(t),g(t),t] (2-39)

This 1s ﬁhe so-called isoperimetric problem with
integral constraints and is reformulated in terms of a
constrainted performance criterion, which incorporates
both equations (2-38) and (2-39). It is written here in

terms of the Lagrange multipliers
T
oo (t) =ft o [£(2),0(1),(0),7]at (2-40)

where A(7T) 1s the Lagrange multiplier vector. There 1s a
Lagrange multiplier for each state varlable. The constrain-

ed instantaneous performance measure 1is
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By [2(0),u(0), M1),2] = /] x(2),u(e),7]

nj;l An(o){e,[x(x)ut0).7] - )'cn(‘t)}

From this equation it is seen that the value of the con-

(2-41)

strained performance criterion is equal to the original
performance criterion when the Lagrange multiplliers,
An(?) (n=1,2,...,8), are chosen such that the terms inside
the braces vanish.

The conditions for a minimum are developed as
before with the inclusion of the perturbed optimal control

variables and perturbed optimal Lagrange multipllers.

xy (1) = x3(T) + 8x1('r)W (2-42)
%3(t) = 2§ () 400, 8x3(T) p 1 = 1,2,4.0,N (2-43)
AL (T) = AL(T) + B8y 624 (T) (2-4h)
uy(7) = ug(t) + 7 Suj(t)' J = 1,2,..0,1 (2-45)

where M represents the number of control inputs to the
dynamic process. Now the constrained performance criterion
Hc is expanded in a Taylor series about the optimal value
Hc*. At this vpoint all arguments of the functlions are

dromnncd Tor coaclaaneca,

H, = H* + z {OC §xy 2?* +; 6%y 9 g* + f33 SAiabHc*}

(2-46)
M

+ ;17{38%31{0* + eee

U3
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All perturbations are treated independently and the conditlons

for a2 minimum are

2, >3, ST (2-47)

where these derivatives are all evaluated at =4=7= 0.
When these conditions are applied to equations (2-40) and
(2-46) the result is

T
j’ {8}(1 dH ¥+ Sk DHM At = 0 1= 1,2,...,N  (2-48)
t le x1

T .
JARESIE Lot Got9)
¢ 5
' = 1,2 M (2-50)
f SufdH,*] dr = 0 J=1,2,...,
t : du¥
j o

Integrating the second term of equation (2-48) by parts
and combining the results with the first term the result is
T=T

t=0 1=1’2’000’N
't:

T
Sx (oH.* - a [2H.*]) ar + 8x,[oH *
C (o] i
ft oo d"'a?a—] STF
1 i 1 (2-51)
The result, as in the first-order case, 1s a set of Euler-

Lagrange equations and transversality conditions corresponding

to each of the N state variables. They are summarized as
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Sxich =0 1= 1,2,.0.,N (2"52)
DX; T=
H ¥ - H #*] =
and o8, (2% 0 1= 1,2,000,N (2-53)
bx: axi

In addition an Euler-Lagrange equation results for each of
the N Lagrange multipliers and M control variables for
arbitrary perturbations. Equations (2-49) and (2-50)
give these necessary conditlons as
53¢
ch* = Xl

3A1

1 =1,2,...4N (2'54)

and bHc*
3“3

I
o
<

= 1,2540.4M (2‘55)

For the fixed-point boundary conditions of
x*(t) = x; (T) (2-56)

the perturbations Sxi(T) are zero and equation (2-52) is
automatically satisfied. However, for the free-point
boundary conditions where XI(T) are allowed to assume any

finite value at this end-point the boundary conditions are
3% — . # -— -
x(t) = x, (8) 5 AJ(T) =0 (2-57)

From equation (2-55) the ovotimal control is seen to be an

algebraic relation and when substituted into the differential
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equations of the dynamlc process and the Lagrange multipliers
give a set of 2N filrst-order differential equations subject
to the boundary conditions previously specified.

| The calculus of variations can treat problems with
movable boundarlies, extremals with cusps (discontinuities
within t<T<T), and others, but the conditions outlined
here are basic to any of the variational problems of this

method.

Poﬁtrxagin's Maximum Principle

The primary limitatlion of the calculus of varlations
in control .theory is that the theory, as developed, is not
sultable for solving problems where control, or state,
varlable saturation occurs. Pontryagin and his co-workers
have extended the methods of calculus of variations to
include such problems, Briefly the equations of Pontryagin
will be outlined here using the Hamiltonian formulation.

The Hamiltonlan function H' is related to the
constrained instantaneous performance criterion of equation

(2-39) and is stated here

N
B [x(2),8(2),20,7] = A (0, [x(0),u(2),7] (2-58)
n=0
where Ao(T) =1 (2-59)
and %o(T) = f‘o[g("c),g(’c),t] = H[gc_(”c),g(‘z),‘t] (2-60)

Thus H' is very nearly H; of equation (2-39) but does not
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include the derivatives of the state variables. The

conditions for a minimum are

Y
¥
u

+*
_a—xT_ _Ai 1—_- 1,2,00-,N (2-61)

2 =} 1= 1,2,000,N (2-62)
and OH' =0 ] = 1,2500e9M (2-63)

These equations are seen to be equivalent to the Euler-
Lagrange equations of the calculus of varlations. Equation
(2-63) is the result where saturation of the control variables
does not occur. If the control vector must remain on or
within a closed region of the M-dimensional control space
U, the minimization process with respect to the control vector
is written

H'* = min H'[g(t),g(r),y"c) ,“c] (2-64)

u(t)eu

Using the definition of H' the result of this minimization

gives the following conditions for optimality

2H' 2B% _ apes 2V - o (2-65)
au*‘;r 3xi bu’j* a,\i

since aH'*/bu;r = 0 when u‘J' is not on the boundary of U,

"and ,aug/ 2%y = awj/ah = 0 when u’5 is on the boundary of U,
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The variables Ai(t) in Pontryagin's maximum
principle are sometimes termed Pontryagin variables, or
ad joint variables, but are seen to be identical with the
Lagrange multipliers of the calculus of variatlons.

In the special case where the dynamic process and
the instantaneous performance criterion are time-invariant
the Hamiltonian is independent of time and 1s written
HY* = H'[g('l‘),l_l_*('l’).ﬁ('l’)] such that

(2-66)
QH'* =20
0T

and the Hamiltonian is seen to be the constant of integration
Ht#% = C (2-67)

Also, in this case, the following condition for optimal

control results

{1*3 gH'* =0 J = 1,2,0..4M (2-68)
u“

J

since aH'*/b'ug = 0 for u¥ not on the boundary of U and

J

ﬁg = 0 for ug on the boundary, because of the time invar-
iance of the process.

The determination of the optimal control for a
first-order dynamic process with control variable saturation
is a relatively simple exercise. This 1s demonstrated in
the several first-order examples of chapter 4, 1In addition,

when no weight is placed on control effort in the performance
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criterion, 1.e. the performance criterion is not an explicit
function of the vector u(?), bang-bang control generally
results as the optimal for the case with saturation.. Un-
fortunately for higher-thaen-first-order dynamic processes
where saturation occurs, the determination of the optimum
control is a far more difficult problem to cope with. This
is because differential equations, rather than algebraic

relations, must be satisfied at all of the switching times.

Dynamic Programming

Dynamic programming, as stated, is important in
control theory for two reasons, Problems with control
variable saturation are solvable, and the solution of the

two=-point boundary-value problem is not required. Control

ed control perturbations is not made. The two-point
boundary-value problem is eliminated by a flooding procedure
where the optimal control signal is constructed point-by-
point. Merriam (7) has stated this flooding procedure as
follows:
" ... Dynamic programming embeds the solutlion to
the optimization of the control system for a
particular state of the dynamic process into the
optimization of the control system for all possible
states of the dynamic process. ..."
Thus one N-dimensional problem becomes N one-dimensional
problems for all initial states and the appropriate optimal

control is chosen from the resulting solutions,
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In the derivation of the dynamic programming
equations, agailn a first-order dynamic process willl be used
for simplicity.’ The functional desired to be optimized is
that of equation (2-14), here repeated

e(t) =j;T F[x('l'),}'c("c),”c] ar (2-69)

The initial concept in dynamic programming is that, rather
than determining the optimal state variable x*(7), the
minimization is determined by finding the optimal x*(%).
Thus a class of solutions is obtained and the particular
x*(t') is determined from the initial state and the value
t' by the relation
£

x(60) = x(e) +[  Ermat (2-70)

From this last equation it 1s seen that F then 1s simply

a function of x(t), t and T, so that equation (2-69) 1s

written
T
e¥*(t) =Jr F [x(t),t,T]dt (2-71)
£ il
and thus the minimum value of the performance criterlon
is only dependent on x(t) and t.
e*(t) = E[X(t),t] (2-72)

The function E then can be called the minimum performance

criterion, and is restated as
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E[x(t),q = 2%2)1;T F[x(r),i(t),ﬁ]dt (2-73)

When the derivative 1s restricted to remain in a glven

region, which 1s the case of control saturation, equatlon

(2-73) 1s written

E[x(t),t] = min T
k(mes) | Fx(2),%(7),%] 4t (2-74)

From this equation it 1s seen that the boundary conditlon

on the minimum performance criterion is that

E[x(T),T] =0 (2-75)

Using equation (2-74) the minimization problem can be

restated as

min

x(x) es('c){jc"T F[x(’t),i(’c),’t]dl’ - E[x(t'),t']} =0 (2-76)

The integral within the braces can be broken into two

separate integrals;

min t'+8 T .

i&?éﬂ?i/ z{mrhﬂthﬂdtt/ F[x(2),%(z),7]aT
t! t*'+8

(2-77)
- E[x(t'),t'l} =0

Now using the definition of the minimum performance criterlon

equation (2-77) becomes
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min {;/-t'+8 x(T), X(T),T]dt + E[x(tv+8) t'+€]

x(T) € s(v) '
- E[x(t'),t']} =0

Equation (2-78) 1s the discrete form of the dynamic pro-

(2-78)

gramming conditlon for optimality and is frequently used in
thlis form. The continuous form of this equation is derived

by letting o) approach zero. When this happens the terms in

the braces are written

ft-msf*[x(t,),sc('c),'t]dr = Srfxenxen ] et

E{x(tr+8),60+5] - E[x(v'),07] =§.amlx(er),e7] + 82'{"2%2-80>

at!

and the minimum performance criterion condition is

S.{gun [F[x(t'),}'c(t')t'] + dE[x(t'),tY] + 5{.ﬂ}= 0
S Ax(tr)es(tr) dt* (2-81)

Since § is arbitrary although small, this final condition,

where § =0, is simply

min F[x(?),x(?ﬁ,t] + dElxgtz,tJ}= 0 (2-82)

x(t)es () dr

where the variable t' has been replaced by T . Taking the

total time derivative of the second term,

dElx(r).,r] = bE[X(t},’t] + x(%) 3Ea[x z),z] (2-83)
Xét;

at
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the continuous dynamic programming necessary condition for

a minimum verformance criterion is

1 F(x(t),x(x),T| + x(r) 2E[x(x), 2]\ = - 2E[x (%), %]
g’é(%)es(t){[ i J i ga'i“{r;" } }acz-

(2-84)

since JE/dT 1is not dependent upon x(%). The sufficient
condition for a minimum is that the performance criterion

is a continuous, strictly convex function of x(T) and is

represented

D2 Flx(7),2(T),T] + x(z) 2Elx(%),z]) =
2oy T @7 + 2o 2slgz]

2R [x(%), #(z),T] 0
2x(T)<

(2-85)

The extenslon of the necessary condition of dynamic

programming to the Nth-order dynamic process is here carried
out in vector notation. The minimum performance criterion

is defined as
T
u(T)eu(T) . H[zt_(l’).g(’t‘).’(]d’f (2-86)

with the boundary condition E[E(T),Tﬂ = 0. The continuous
form of the minimum performance criterion is here seen to
be equivalent to equation (2-82) and is

min {H[L(T),Q(T),t] + dE[x!t},T]} =0 (2-87)
u(T)eu(t) dtT
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The total time derivative equivalent of equation (2-82) is
N .
aE(x(%),1 = 2E[x(x),2] + ¥ x, (T) 2E[x(%),1] (2-88)
at X3 1=1 X4 ()

and the condition for minimum performance which corresponds

to equation (2-84) 1is

N
1 Hlx(T),u(7),T £, [x(T),ulz),T] 2 E{x(2),
T B R P RN LR “"a[:imd}
= - 2E[x(%),7] (2-89)
3T

In .the dynamic programming formulation the term
3E/3x1 is equivalent to the Lagrange multiplier, Ai’ of
the calculus of variations and Pontryegin's maximum prin-
clple. From equation (2-89) it is not hard to understend
why the discrete formulation is most frequently used to
find the minimizing control for higher-than-first-order

dynamic processes,



Chapter 3

DESIGN OF OPTIMAL FEEDBACK CONTROL SYSTEMS

Introduction
In this chapter the application of the optimal

control methods of the previous chapter are applied to the
problem of desligning an optimal feedback controller. The
general performance criterion for this work 1s an integral-
square~error criterion weighting perturbations of both state
and control variables from the nominal values of these
varliables., In various other applicatlons of optimal control
theory to nuclear reactor processes, the methéds of the
previous chapter were used to find the nominal state and
control variables, but in this work these trajectories are
assumed to have been previously determined.

The first consideration is the selection of the
appropriate performance criterion, henceforth referred to
as an error criterion. In this section is discussed such
topics as control saturation constraints, selection of the
welghting factors, and the incomplete measurement of the
physical state variables.

Following is a section on the synthesis of the sub-
class of linear dynamic processes, The feedback controller
as determined by elther the maximum principle or dynamic
programming are identical for linear systems, and only the

33
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dynamic programming format 1s used. The general properties
of linear optimal control systems are outlined specifically
in this section. A discussion 1s also included on the
stability of the linear optimal control system.

Finally, the synthesis of non-linear control systems
1s discussed. Here techniques for determining quasi-
optimum feedback control systems are presented. Dynamic
programming and the maximum principle are discussed sepa-
rately for quasi-optimum feedback control because significant
differences arise, Primarily, the maximum principle ylelds
a quasi-optimum control which approximates the optimum
control eqﬁation by a Taylor series expansion about the
nominal trajectories. Dynamic programming, however, approx-
imates the minimum error function (performance criterion)
by a Taylor serles expansion about the nominal trajectories.
The differences in the two methods are not obvious a priori.
Thus non-linear quasi-optimal feedback control synthesis
should be evaluated by both of these methods to determine
which 1s better for the problem at hand. Examples in chapter
4 demonstrate that the cholce is not unique and that general-
izations concerning system performance are somewhat difficult

to assay beforehand.

Feedback Control Design Considerations
The first consideration in the design of any control

system is the selection of an acceptable performance criter-

ion. For the feedback controller evaluation some measure of
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the errors relative to the nominal variables of the dynamic
process 1s required. Henée, a sultable performance criterion
ls an error criterion. 1In some problems this criterion might
be speclifled only at a single point in time. For example
1t might be desired to minimize errors in the terminal
values of the state variables. Such an error criterion
would take the form

N

e(t) = 3 F[x(D - x (1) (3-1)

where the functlons F1 are arbitrary, but would naturally
conslder only the magnitudes of the errors. Acceptable

choices of Fi might be

F(y) = |y|; Fly) = y° 3 Fly) = y2*  (3-2)

An error measure that is equivalent %o equation (3-1) is

the impulse error measure

N (T |
e(t) = 1;]; S(T-T)Fi[x*{(’t)-xi(’t)]d't (3-3)

where §(T-T) is the unit-impulse function or the Dirac
delta function. The upper limit is considered the time
where control effort terminates,

A somewhat better error criterion, would be to
minimize the accumulated errors for the entire control
interval. Such a controller, in the true sense, is a
feedback controller such that all xi(t)::x;(t) for all

real time. Thus the errors_are welghted over all future
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- time starting with the present, The error criterion for such

a system 1s
e(t) = gglj;TQ51(T)Fi[xg(t)-xi(t)] ar (3-&)

where the q51(7) are welghts assigned to allowable state
variable errors. They are here termed state variable
welghting factors.

In addition to minimizing state variable errors,
it 1is usually desirable to minimize control variable errors
also. It was stated in the section on the maximum principle
that when control effort is not weighted in the performance
criterion the optimal controller is a bang-bang controller.

Such control is not always satisfactory, and when nominal

such that uJ(t)zsug(t) for all time.
The error measure of equation (3f4) is now modified

to include control variable errors

e(t) = Eilj;Tgbi(T)Fi[xI(T)-xi(T)]dt

+ P:j:r %(’C’)G‘][ug(’t)-uj(z)] aT

(3-5)

where the functions y03(f) are termed the control variable
weighting factors.
In this work quadratic-error criteria are used

exclusively., There are several distinct advantages for
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- using such criteria. Firstly, large errors are penalized
more heavily then smaller ones and this is desirable.

The criterlion can easily be chosen to be a strictly convei:
finctlon of the errors, since the square terms are always
positive definite, which is a basic condition for the error
measure to assume a minimum value., Most importantly,
however, the resulting optimal feedback controller is linear
for linecar dynamic processes and the resulting quasi-optimal
controller using the maximum principle is linear for non-
linear dynamic processes. A form of this quadratic-error

criterion is

' N (T
2
e(t) = 3 [ iy ([ (0)x, (0)] 2ax
i=1Jt
(3-6)
M T >
+ 3 [ gy ()] 2ar
£Z1de Y L] J
The conditions ¢11(’t)2 0 and }VJJ(‘C) > 0 are imposed so
that the integrand is positive and strictly convex. 1In
equation (3-6) cross-product terms between two different
state variable errors, or between state variable and control
variable errors, are not included, because they usually are
meaningless in the design problem. Equation (3-6) is the
basic error criterion used in all of the present examples.
Some dynamlc processes require a large number of
state variables for an accurate mathematical description.
Unfortunately, the measurement of all of these variables

may not be possible, For example in nuclear reactors
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systems the direct measurement of delayed neutron precursor
densities is not possible., These variables are required,_
however, for the feedback controller to be optimum. When
incomplete measurement arises the most satisfactory means
of obtaining these states 1s on-line computation of those
not measured. This requires that at least one of the
physical states be measured. Power level, for example,
i1s a measurable state in the reactor and all precursor
densities can be determined from this state.

Because of the frequent need to calculate the
precursor concentrations in reactor kinetics, the on-line
computer fof these 1s evaluated here, The description of

the simplest reactor with delayed neutrons (16) 1is

6
n=,on -48n + Y A, (3-7)
£ £ 1=1
and &y =840 - A404 1=1,2,...,6 (3-8)
£

where n is the reactor power, a state variable, Yy is the
tofal reactlivity, a control variable, and cy are the pre-v
cursor densitlies. The parameters /3, [, Ay and £ are
characteristic of the given reactor dynamic process and the
type of fuel utilized.

delayed neutron yleld of 1th precursor-group

By
per fission

6
A = Z ﬁi = total delayed neutron precursor yield
i=1 per fission
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decay constant of the 1th precursor group

A

and /5

it

the neutron lifetime of the reactor.

Equations (3-12) relate the state variables of precursor
densities to the reactor power level and are linear differ-
ential equations. The transfer function of each group, with

reactor power as an input, 1is

C,(s) = 8/ea 1=1,2,...,6 13-9)
N(S; S;Al”'l

The equivalent electrical analog with the same transfer
impedance is represented in figure 1. The transfer function

of the electrical network of figure 1 is

Vey(8) = R23/(Rqy + Bpy) (3-10)
V(&) (R23/(Ryy + Rp3JJR 4Cys + 1

The output voltage Vg, (t) corresponds to,[ci(t)-ci(oﬂ when
Vn(t) corresponds to [n(t)-n(oﬂ and the following equalities
hold;

R21/(Rgy + Rpy) = G\/LA, (3-11)

Flgure 2 i1s a schematic of the reactor plant with this type
of on-line computer,
The selection of the welghting factors qbii(t) and

1033(27 can generally be specified by the performance
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Byy f
Vnh(t) $ By, ——— c, vci(t)
Figure 1
Electrical Network with Transfer Function
Equivalent to Equation (3-9)
SO plt) | REacTor | DO
"?_ | PLANT
r— s~ — - = T T T
I
| 8p(t) | FEEDBACK nw)I
CONTROLLER |
l I
R,
: —]lic. ian *  ON-LINE :
C.(0) COMPUTER
L T _=T -
Flgure 2

Schematic of Reactor with On-Line Computer
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requirements, or constraints, of the overall dynamic process,
The selection is not unique, and some alteration may be
required of the initial choices. The more difficult the
design problem in general, the more important the selection
becomes 1f the design requirements are to be met.

A purely heuristic method of selecting the welght-
ing factors is presented here in terms of elementary concepts.
The instantaneous error measure is written

N i »
H(t) = 1Z=:1 ¢11(t)[x1(t)-x1(t)]

+ ;1 %J(t)[uaj (t)-uJ(t)]z

(3-13)

=

The weighting factors are then determined on the basis of
maximum allowable errors. For example, the maximum
allowable state variable errors at any point in time
contribute equally to the error measure,»slnce it i1s desired

to minimize the integrated sum. Thls is stated as

Pa(@) = (Bxx@ma '@ (r) 1 =1,2,...,8-1
T (3-14)

The 3xi(T)MA are then

axi(T)MA = EXI(TO-X1(17] max allowable ~ (3-15)

The same logic may be applied to the control errors
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- (T) = | Suy (@] (T) 3 = 2,3y000sM
Vi T Y b=
J T MA (3-16)

where Suj(t)MA = [u; (T)—uj(Tﬂ max available (3-17)

The maximum allowable and available errors are subject to
the design performance specifications.

In addition the total contribution due to maximum
allowable state variable errors in the error measure should
roughly equal the total contribution due to maximum avail-
able control errors in order to minimize the error criterion.

Using this relation

N 2 M 5
12;,1 By, (1) 6xy % (T)yy = J);l %3(7)5113 (T)y,  (3-18)

When equations (3-14) and (3-16) are considered equation
(3-18) 1s equivalent to the following relation

2

Bus(?) = u[8u )y,

Vi1 (D) (3-19)
5 XN (T)MA

Finally, if )011(7) = 1, all other weighting factors
are uniquely specified by this procedure. Probably, however,
the maximum errors do not all occur simultaneously and the
equations are somewhat unrealistic. The equations indlcate
that the weighting factors are time-varying, but they can be
treated as constants when 8xi(’t)MA and Suj(T)MA are set

equal to their largest values during the control process.
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In some instances it is desirable to weight the
terminal state variable errors more heavily than at any
other time in the control interval. This is accomplished
by impulse weighting of the type considered in equation
(3-3). If this 1s necessary, the welghting functions for

the state variables become

P, () = Py (1) + By Be-T) (3-20)

where Gbi,T is the impulse weighting factor for the iPtP-
state variable error at the terminal time. Impulse weighting
has the same effect as increasing the duration of the control
interval.

In the design of feedback control systems, control
and state variable saturation constraints
The error criterion of equation (3-6) does not take into
consideration saturation constraints which are sometimes
termed "hard" constraints. A simple procedure is available
(7) to incorporate these constraints into the error criterion
of equation (3-6). This i1s a technique whereby hard con~
straints are replaced by mathematical relations, termed "soft"
constraints, that heavily penalize values near the limits of
saturation, However, in this work soft constraints have not
been considered.

When reactivity is the control variable in a nuclear
reactor, the resulting dynamic process, as indicated by

equation (3-7), is non-linear. This might lead one to
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bellieve that only non-linear synthesis should be considered
for nuclear reactor processes, However, Kliger (5) has
introduced a technique which transforms the non-linear
dynamic process into a linear one very simply. The non-

linear dynamic process can be written alternately as
(t) = A(E)x(8) + b[x(t),u(t),4] (3-21)

where the first term on the right represents all the linear
terms in the state vector x(t) and the vector b represents
the nonlinearties and the control terms of the dynamic
process, A pseudo-dontrol vector 1s then equated to the

vector b
u'(t) = Q[L(t).g(t),t] (3-22)

and the resulting dynamic process is linear.

For a nuclear reactor described by the equations

ns=AOn-48n +2Ac (3-23)
ﬁl_ Z

é = é_n_ - AC (3-24)
£

the pseudo-control variable would be

u'(t) = ﬂ(tzln(t) -~ (3-25)

Since n(t) 1s a measurable state, the actual control

reactivity 1s obtained by multiplying u'(t) by the measurable
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~quantity £/n(t). This necessarily requires that a small

auxiliary component be introduced into the control system
to carry out this operation. Figure 3 is a schematic of

the control system for equations (3-23) and (3-24).

Synthesis of Linear Systems

In this section the optimal feedback controller
equations are developed for dynamic processes which are

described by equation (2-5), here repeated
x(t) = A(t)x(t) + B(t)u(t) (3-26)

where A(t) and B(t) are given by equation i12-0). The
variational problem is to minimize the error criterion

of equation (3-6) subject to the linear dynamic process of
equation (3-26). The dynamic programming format of equation

(2-89) 1s used here. The error criterion is repeated here

N T . .2
e(t) = 1;1L By (7)1} (¥)-x; (7)) © ax
(3-27)

+ .i:l LT %J (T) [ug ("t')-uJ (T)] Zd?_-

The development of the optimum controller equations can be
presented in a concise way using vector-matrix notation.

Equation (3-27) rewritten in vector-matrix form is

e(t) = j; ! {[5*‘3]T§15 [c*-x] + [2*-2]T\1/[2*-E]}d" (3-28)
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where the time arguments have been dropped for conciseness.
The superscript T indlcates matrix transpose. The welghting

factor matrices Q) and \y are dlagonal of form

- 7
D0 o vee O
0 ) ... 0
¢ = . ?22 . (3"’29)
Lo 0 ¢NN('Z:)’
and —\Vll(’t) 0 vee 0 i
0 () ... O
V= 1. ¥z . (3-30)
0 0 cee %m(?)

vector-matrix form, the necessary condition for a minlimum-

error controller is

s (] + ey

+ .&T[E]} = -[_a_a] (3-31)
2X N o

where RE|T =| 2E RE 2E {3-32)
X 3%y ¥Xp OXy

The optimal control vector 1is determined when the partial
derivative with respect to u(t) of the term within the

braces of equation (3-31) is taken
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> *#_yl7T #-u] + xX| dE|{ = 0 (3-33)
_53_{[1_1. u] "y[w y + & ["a'i]}
where %P = xTAT 4 uTsT (3-34)

Performing this operation the optimal control vector 1s

w(T) = u* - Ly~ BT 2E (3-35)
( v - Ly [bx] 3-35

where the superscript © designates the minimizing control.
Substituting equation (3-35) into (3-31) the condition for

a minimum is obtained.

AT Fewoe - il 21T 18Tl A
Eafob s g Y
+ xat [_Q_E] + u*TBT [.«LE] = -2E
00X X 2

The problem now is reduced to finding E[ ,r] . The solution
is obtalned by assuming that the mathematical form of E[;,'z-]
1s a quadratic function of x(T) with time dependent co-
efficients. The assumed solution is then substituted into
equation (3-36) and shown to be the correct solution under
certain conditions.

The assumed solutlon is
E[;s(t),“c] - k(2)-kT(0)x-xTk(T) + XK(D)x ~ (3-37)
where k() is a scalar function, and

ET(2) = [k (00, () ool ()] (3-38)
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and .kll(T)klz(T)...klN(T)
Ky o () koo (T) oo ky i (T)
T) = . . . (3-39)

.klN(‘t)kzN(t) oo .kNN('t)J

K(T) = K7 (

From equation (3-37) the necessary partial derivatives of

equation (3-36) are

RE = -2k(7) + 2kx (3-40)
2 X
and k(T)-k () x-xTk(7) + xTR(7)x (3-41)

AQF =
”AT

Substitution of equation (3-40) and (3-41) into (3-36)
gives the necessary condition in terms of k(T),k(Z) and
K(?). The result is

et Tha-xip xr+x'h x-xTiEp - 18Tkx + kTBP B Tx

+ x"kBW-18Tk-kTBY - 18Tk + x'KAx-kAx + x'KBu* - kTBu*

Tkx - xTaTk - uw*TBTk = -k + xTk + kTx - x

+ x7aTkx + u*
(3-42)

The vector x(Tr) can assume any arbitrary value and thus,
in order for equation (3-42) to represent a minimum, the
coefficlients of the powers of x(T) on the left must equal
the coefficients on the right. These conditions result in
first-order differential equations which describe the

kX parameters.
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-k = gc_*chg* - k"B ~18Tk - 2kTBur (3-43)
k=(x* - kBY -18Tx + ATk + kBu* (3-4k4)
and -k = kA + ATk - kBY-18Tk + D (3-45)

The boundary conditions for the equatlions are
found from the boundary condition for the minimum error
criterion. The error functional E is given by equation
(2-86) such that

T

E[zt.('c')."c'] = mn [ H[z.g.t] az (3-46)

and from equation (3-28) the identical relation 1is

E[z(’t'),‘t'] = min e(T') (3-47)
u

Thus the boundary conditions are determined from the

condition
E[;(T),T] =0 (3-48)

of, if equation (3-20) is utilized as the state variable

welghting functlon, impulse weighting of the terminal error

implies

E[x(1),7] = [x(m-x*(0)] TP [2(T)-x* (7)) (3-49)

where
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(3-50)

o
;)e_ :

0 6 coe ¢N,T

From equation (3-37) the boundary conditions of equations

(3-43), (3-44) and (3-45) are seen to be

k(1) = x*(1)Prxr (1) (3-51)
k(1) = Ot (1) (3-52)
and k(1) = P (3-53)

or they are all zero if equation (3-48) holds. It is easy
to demonstrate that equations (3-43), (3-44) and (3-45)
imply the following relations:

k(7) = K(2)x*(2) (3-54)

and k(2) ;?T(t)x(t)g?(t) (3-55)

and hence only the solution of equation (3-45) is required,

and 1s here repeated
K — T «1xT 6
- K = KA + A'K - KBP-1B'K + (3-56)
where K(T) = q>T'
Equation (3-56) is termed a matrix Riccati differ-

ential equation., The solution of these simultaneous

differential equations for greater than a second-order
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dynamic process requlres rather sophisticated digital
computer programs or analog computer solutions. For time-
invariant dynamic processes, the matrices A and B have
constant elements, and equation (3-56) is non-linear with
constant coefficients.

Equation (3-32) gives the optimal control vector.
Utilizing equations (3-40) and (3-54) the optimal control

is expressed as
u(7) = wr(v) + P-18% (1) [z (0)-x(7)] (3-57)

Thus the optimal cbntroller consists of the nominal control
vector, pius a feedback element that weights linear per-
turbations in the state variables from their nominal values.
The term i!'lBTK(T) 1s the optimal feedback gain and is seen
to be time-varying. Figure 4 is a schematic of the optimally
controlled linear dynamic process.

It is worth noting here that the solution of K(7)
does not require prior knowledge of the nominal state and
control vectors. An equation similar to equation (3-56)
must be solved when the approximation technique of Pontry-
agin's maximum principle is applied to non-linear system
synthesis. However, the matrices A(t) and B(t) are time-
varying functions determined by x*(t) and u*(t) and are
different than the corresponding matrices for equation
(3-56). The main advantage of the linear optimal feedback

controller then is that, once equation (3-56) is evaluated




53

IoTTOI3U0) ¥oBqpasd Teuildo

4 2anItg

(V8. _A

|

SSHO0"d
OINVNZA




and the galilns are determined, thils controller holds for
any nominal set of values the dynamlc'process may undergo.
The question of stablility of the control system
often arises, It can be easlly shown that a linear optimal
control system based on the error criterion of equation
(3-28) is asymptotically stable in the large for certain
feedback conditions. The system will be considered stable
if x(t)—=x*(t) as t = 00. A new equilibrium vector re-

presenting the state varlable error is defined
z(7) = x(2) - x*(T) (3-58)

Utilizing equations (3-34) and (3-57) the newly defined

dynamic process 1is

z2(7) = x(r) - x*(7)

{Azt_('c) + Bu* (%) - BY-1BTk(2) [;(z)-x*(rg

- {pr 4 Bg*(t‘)} 3-39)

= [A-B\If-lBTK(’c)]g(t)

The solution of this equation is
z(t) = expj;)t [A-Bq/-lgm(z)] dr z(0) (3-60)

or in eigenvalue notation
\

t
2(t) = exp[  @(2)ax 2(0) (3-61)
] |
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where (G(T) is the diagonal matrix

r 91('z) 0 eee O W
0 O, ... o

O(r) = 2 (3-62)
K 0 e By

The elements 91(’() are found from
IQ(“C) - A+ B‘i/'lBTK('t)I =0 (3-63)

and for stability all Qi(T) must be less than or equal to
zero as ft -= 0. Where the system matrix A corresnonds to
a stable linear dynamic process this condition is auto-
matically satisfiled, since K(?) is determined for a strictly
convex error criterion.

The Riccati matrix equation (3-56) reaches its
steady state value as t - o, and K - 0, and K(T) 1s a matrix

of constant elements, When K = 0 the determinant of equation

(3-63) can be rewritten.
l@ + K_l(b + K-lATKI =0 as t-» oo (3-64)

Thus, if the system matrix A corresponds to an unstable
system without feedback, stability can be regained by
proper selection of the matrix (b . Due to the dependence
of K on (b and A, this selection is not obvious a priori.
It is possible for unstable control systems to

result if the terminal control time T is too short.



56
Asymptotic stability 1s only guaranteed where control
effort 1s applied until all Qi(t) become and remain
negative semi-definite. For thls reason the terminal time
T should be chosen long enough that the feedback galns of
equation (3-56) have begun to settle at their steady state
values, If T is sufficiently long that the gains approximate
their steady state values during most of the control interval,
the steady state solution of equation (3-56) is sufficient.
In this case the feedback galns are constant with respect to

time which 1s desirable.

Syntnesis of Non-Linear Quasi-uptimal Controli Systems

If elther the dynamlic process is non-linear or the
performance criterion is non-quadratic the preceeding
development does not hold, Closed-form expressions for the
optimum control equation in non-linear problems cannot be
analytically determined except for some simple examples,
Therefore, approximation techniques must be used, In this
sectlion the control system 1s assumed to operate in a small
region about the nominal state and control vectors x*(t)
and u*(t). This immediately sets the requirement that these
vectors must be known beforehand to design the quasi-optimal
feedback controller.

The synthesis problem is then to find a sultable

approximation of the optimal control vector

wo(t) = B[x*(t),t] (3-65)
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in terms of the measurable state vector x(t). Two methods
of obtalnlng the approximation are currently used. The most
obvious 1s a Taylor expansion of the optimal control vector
about x*(t) confining the system to operate in a sﬁitably
small reglon. This 1s represented by

g(t)zg[_{*(t),t] + ag[x*(t),t] [z(t)-g;c_*(t)] (3-66)
d x*(¢t
where [ 3P1 3P1 3P1 ]
axi axz eeo e axN
2P, 2P dF;
oL = o %y 0 %2 XN (3-67)
o x*
oFy 2Py . 9Py
axl aX2 axN

Another method is the use of a similar approximation for the
minimum error function, ELg(t),t] y Instead of the optimum
control equation.

These two methods are developed here using the
maxlmum principle approach for the first and the dynamic
programming principle for the latter. Later it willl be
shown that it is not easy to decide which quasi-optimal
control ylelds the better controller unless each has been
evaluated separately.

First, the maximum principle approach is considered.

The dynamlic process is represented by the set of non-linear




58
first-order differential equations
£(t) = £[xz(),ult),¢] (3-68)
It 1s desired that the system operate in a small reglon
about the nominal trajectories and the perturbations are
represented
du(t) = u(t) - u*(t) and §x(t) = x(t) - x*(t)
(3-64)
The resulting plecewise linear differential equations
describing perturbations from the nominal variables are
time-varying of the form
Sx(t) = 3 £fx*(v),u*(t),t] §x(t)
2 XF(t)
(3-70)
+ 2 £x*(t),u*(t),t] Su(t)
D u*(t)
or Sxz(t) = A(t) S§x(t) + B(t)S u(t) (3-71)
where A(t) 1s the system matrix and B(t) is the input
matrix. Both are now direct functions of x*(t) and u*(t).
The quadratic performance index is written
TreoT T
e(t) = lf {35 (I)S_Js + du \I/5g}d‘t’ (3-72)
27t v
and the system is now subject to the constraints of equa-
tion (3-70). The Hamiltonian function then is
(@) = 1 {55 8x + agT\lfsp_}+ X[a@) §x + B(x)Su]
(3-73)
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The necessary conditions of chapter 2 are applled to find
the optimal control equation for du, and the adjoint

variables A(t). These equations are

2H = Psu+8T) =0 (3-74)
osu
28 = B8z +aTA =-2 (3-75)
08X
The optimal control equation becomes
Su = - P-18TA (3-76)
The adjoint variables are assumsd Lo have the foim
Alt) = K(t) §x(t) (3-77)

where K(t) is a matrix of time-varying elements and can be

found from equation (3-75)
- K(t) Sz(t) -k§5x(t) = Pox + aTksx (3-78)
The optimal control equation (3-76) is now written
fu=- Y-8tk gx (3-79)
Equation (3-71) describing the dynamic process becomes
ox = [A - B\P"lBTK] Sx - (3-80)
Substituting equation (3-80) into (3-78)

-[f( + KA - KB\_{/‘lBTK]S_:_c_ = [(b + ATK]SE (3-81)
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Since §x 1s arbitrary the above equation is rewritten
. T
- K =ka + Ak - kBY-18Tk + (3-82)

This i1s seen to be the Riccati matrix equation (3-56)

of the previous sectlon. The difference, however, is that
the matrices A(t) and B(t) are here explicit functions of
the nominal vectors x*(t) and W(t). The optimal feedback
control of equation (3-79) demonstrates that the feedback
gain, -qy'lBTK, 1s now a function of the nominal variables
also. Figure 4 of the previous section is the schematic
for the controlled dynamic process of this approximate
method.

From the transversality condition at the terminal
time, A(T) = 0, and since §x(T) is arbitrary the boundary
condition for equation (3-82) is K(T) = 0, or K(T) = q>T
1f impulse weighting of the terminal errors is required.

The second method of quasi-optimal control 1is
developed using the dynamic programming format. The
dynamic programming equation for a minimization for the
non-linear problem is

2 E[x,7] + min {H[z,g,”c] + £7 2E[x,2] } =0 (3-83)

2T u(z)e u 2 X

where the Hamiltonian is defined

T 2E[x,7] (3-84)

5 = H[z,g,t] + £
20X
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The minimum value of the Hamiltonlian is represented

e - an o {F ) -89

and equation (3-83) 1s written as

aEa[:,z] + H'*[g,"c] =0 (3-86)
The approximation procedure is now applied to
equation (3-86) by making a Taylor series expansion of
both the minimum error function and the Hamiltonian function
about x*(t). The results of this approximation procedure
are presented here without the complete derivations (7).
An arbltrary pth-degree expansion of the minimum

error function is

N N N
L .
Ep[l, ] . 2 n1z=1 nlxnl * nlz=1 nzz;l knlnzxnlxnz
| (3-87)
N N
+oee "'% n1>:=:1 cos n.§=1 kn1...npxn1"'xnpk

th

The minimum p~“‘~degree Hamiltonian is represented

H‘;*[E,T] ) 3%2) €V {H[L’E’t] * ET[-}S’E"C] 2 Epl XoT] EP[E’?]} =0

X
(3-88)
The approximate form of equation (3-86) then is
bEp[L’C] + HL')* + {(p+1)St-degree terms in 8;} =0
2T (3-89)
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The power serles expansion of Hﬁ* can be written

N

N
fipt = W5 * n12—1 Ty {2—1 nzz':'l "ign,ny M,
(3-90)
N N
+ oo e + L N ] H* 00
n;’-"l n.pz=1 Ni.. .npxnl xnp
where the H* functions are
N
* = JH'* - JHipgre
axnl... 0 *ny 3415 2xp, .2 Xnjy+1
1.
...+ 1 p— * o0 p '* x* ...x;
{p-J)! J+1 =1 n-;; ng'p = Ry+1 pj‘;:g
R (3-91)

The function H; is computed when j = 0 in equation (3-91).
Substituting equatiors (3-90) and (3-87) into
equation (3-89); the result, when the common coefficients
of X are collected, is
N
[1'{+Hg]-2 Y [knl _H.n]xn1+...

n{=1
! (3-92)

N N [
E; 3;1[kn1...np + g Hﬁl--'np] xnl...xnp =0

'dll\)

Finally, equation (3-92) is valid for all x when

Kk = - Hg (3-93)
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ky, = L, | (3-9%)

- R Hﬁl"'nj J =2,3,...4p (3-95)

and - l{fllooonj 2

The boundary conditions on the above equation are

Bp[2(1),7) = [x(m-x0(1) ] TP, [x(m-x* (1] (3-96)

When the operations of this method are carried out,
equations (3-93), (3-94) and (3-95) are generally non-linear,
containing time-varying functions of x*(7) and u*(t).

Exccpt for the computational difficulities or soliving
the k parameters, this method is a very flexible synthesis
technique for quasi-optimal non-linear control. Where

non-quadratic performance criteria are used, this technique

1s superior to that of the maximum principle.




Chapter 4
FIRST-ORDER NUCLEAR REACTOR SYNTHESIS

Introduction

In this chapter several first-order reactor dynamic
processes are considered, to introduce and demonstrate the
application of optimal feedback control. The considerations
of the previous chapter are applied to three separate first-

order mathematical reactor models. Both linear and non-linear

synthesis &f thece medels arc cvaluated, The probliem is o
determine the mathematical form of the compensating control
reactivity which minimizes the integrated errors of reactor
power and control reactivity.

The nominal power for all cases 1s chosen to be a

constant steady state value of n*(t) = n,. This 1s necessary
TanmnaAasranan avmss AT Ver CRamd caed e a3 _ A - « -
S m Tt - e vy -V W A e PYRUAV RN e} u.v al.vv AUT Y U2 VT LY L S~

present reactor dynamics during transient operation., The
majority of the work is based on an infinite control interval,
l,e. T = 0o . Saturation constraints are also considered.

For each model a comparison is made between the
control reactivity determined by linear synthesis, exact
non-linear synthesls, and the quasi-optimal methods of

non-linear synthesis discussed in the previous chapter.
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Linear Prompt Neutron Reactor Synthesis
The model chosen here to représent the nuclear
reactor dynamic process neglects delayed neutrons and any
intrinsic reactivity feedbacks, It is mathematically
described by
n(t) = _Ot)n(t) (4-1)
£
where n(t) 1s the state variable, reactor power level,
©(t) is the control reactivity, and £ is a characteristic
neutron generation time of the system. If /D(t) were a
funstion of nlt), csguation {4-1) would e nun~iinear,
The technique of Kliger is used here to obtain a linear
system. The pseudo-control varlable is
u(t) = tin(t (4-2)
£
such that equation (4-1) now becomes
n(t) = u(t) (4-3)

The desired quadratic error index for this example

e(t) = [n(1)on,] P, +ftT{¢[n(fc>-no]2 + u(e) z}n (et

In equation (4-4) the control weighting factor, Y, 1is chosen

to be unity. Also, the control error is merely u(?) since,

65

is

when n(%) = n,, the steady state value, the control reactiv-

ity 1s, L(T) = 0, and thus u*(T) = 0. Equation (4-4)
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minimizes errors in the control, ,(t)n(t)/Z, and 1s
related indirectly to minimizing errors in p(t) only. In
the non-linear examples of this chapter the term u(z)? in
equation (4-4) is replaced by ,0(2’)2.

The necessary condition for a minimum, in the
dynamlc programming format, is given by equation (3-39).
For this problem it is written

= - -n 12 2 -
7 o Pl Frumgg} s

The control which satisfies this equation is determined by
setting the partial deriwvative with respact ta unlrw 101 +a

anIna
- -~ N Wy - v e

zero and solving for it. The result is

u(z) = - 1 2Eln(x),7] (4=6)
2 2 ni(r

and equation (4-5) becomes,

AF + nﬁrn(_'r)_n‘lz -1fawl2 _ & (.
2z ¢t ”-' ¥|%n

As demonstrated in chapter 3, the solution of this equation 1is

E[n,’t] = k - 2kyn + kqn® (4=8)

Equating coefficients of the powers of n to zero after

substituting this solution into equation (4-7), the following

equations result:
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k =x§ - ¢pn_? (4=9)
and i‘li = k112 - ¢ (4-11)

As mentioned in chapter 3, only equation (4-11) need be
evaluated, since kl = k11no’ and the boundary condition due

to impulse weilghting at T = T 1s
kg1 (T) = &y (4-12)

The solution of equation (4-11) is

kﬁm = \/Etanh[\/E(T-r) + tann-iv%T_ ]} (4-13)

The resulting feedback control then 1is

u(z) = \/Etanh['\[Z(T- T) + tanh~1 %][no-n(t)] (4-14)

Mlace - v . S - -~ a~ - 0 - - . . - -
..... ViiLv VN VLUGL L TTUVAVL UUILVLI VUL 4D 3 VIUWUS= VALY LI padll

times the linear deviation of the power from the nominal
steady state nge This is qualitatively as expected, for
when n=>n, negative control is applied to return the power

to steady state, and for n< n, positive control is applied.
Impulse weighting is seen to have the effect of increasing
the control period. This effective control period is written

Tepp = T + _1 tanh=1 Pr (4-15)

e e
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The selection of ¢ is determined by the method
outlined in the previous chapter. With Y= 1, the welghting

factor 1s determined from the equation

P = {_gu_m}; (4-16)
NMa

Suppose, for example, that the maximum allowable deviation

in power is the fraction P of the steady state wvalue n,

and that the maximum available control is limited by a
period constraint on the reactor. The period constraint for

this model is written

wp = (A/m)yy = (p(t)/L) . (4-17)

and the maximum avallable control becomes

Unax = Pnmax (4-18)
Using the considerations that

SnMA = P n, (4-19)

and np.y g1lowable = (1+P)ng (4~20)

the weighting factor is found to be

P = umaxzz - on® [1B)7 = wp?  (h-21)
[Pno]

where ‘”ﬁ. 1s a weighted maximumvallowable inverse period.
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A plot of the feedback gain, represented by equation
(4-13), as a function of t/T, for several values of ¢T, 1s
presented in figure 5. The maximum value of ¢T’ is
¢Tmax ='\/?6= wp. Where ¢T = w}h » the gain ky4 is a
constant for all time. For ¢T< w'm the gain k11 is seen to
be a function of w1;1 T, which is approximately equal to the
number of relaxation times for which control effort is
applied. The terminal value of the gain i1s seen to be a
direct function of the factor ¢T/w];1.

The optimal kreactor power response 1is given by
equations (4-22) and (4-23) for the cases where
¢'1‘ <wp and @, = W, respectively

n(r) = n, + [n(O)-no] cosh[wﬁl(T-‘C) + tann~! ¢T/w1;1_]_ (4-22)
cosh[ wiT ¥ tanh-1T ¢T/w,;1]

and n(T) = n o+ [n(o)-no]e“*)&;t (4-23)
where n(0) 1s the initial perturbation at t = 0, Substituting
these relations into the optimal control equation (4-14), the
control 1s represented as an explicit function of time.

For ¢ <wh

u(T) = wp smh[mr'n (T-1) + tanh-1 ¢T/w,;1] [n(o)-no] o (4=24)
coshr?nﬁl T + tanh-T ¢T7w,;1]'

or for ¢, = wy

_WnT

u(t) = - w! [n(O)-no] e (4-25)
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The corresponding optimal reactivities for the two

cases are

P(T) = - [wl;l[n(o)-no] sinh[wi(’l‘—‘t) + tanh-1 ¢‘I‘] »
Wy

-1
{no cosh [wr:lT + tanh ﬁ] +

wy (4-26)
[n(O)-no]cosh[wﬁl(T-t) + tanh~1 b -1
¥
m
or for ng = w?!
. ot
P(T) = omT (4-27)
n, e

All of these equations correspond to the problem
where the terminal state is not specified (the free-point
verminal-poundaary-vaiue problem). ln the case where the
terminal power level is fixed at n(T) = ny this constraint
may -be incorporated into the Hamiltonian by the use of a
Lagrange multiplier. The Hamiltonian i1s written

H = ¢[n(t)-no]2 + u(?.')2 + Au(z) + u(r) 2E=0
n

(4-29)
The optimal control equation becomes

2u(z) + A+ dE =0 (4-30)
on
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" The solution is assumed tq have the form

E =k - 2kqn + kqqn? (4-31)

It 1s necessary to solve:

-k = ¢n? - i A%+ 2k - k% (4-32)

- }.{1 = ¢no - Ak11 - kikq4q (4-33)
—=

- }211 = @- knz (4=34)

with the boundary coﬁdltlons
k(T) = kl(T) = kll(T) =0 (4-35)
Here impulse weighting is not required, due to the fact

that the terminal error is constrained to be zero in the

Hamiltonian. Only k1 and k11 are required to find the

ontimal rantral. The eAlutiaAnc awra
ky(7) = /@ tann[ [ (1-7) ] (4-36)
k,(T) =/ n, tanh['\[a';(T-’c)] + % {1-sech[‘\[$(’1‘-'t)]}

(4=-37)

The value of the Lagrange multiplier is found by
combining equations (4-30), (4-36) and (4-37) with the
boundary condition that n(T) = n,. The result 1is
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A==2 ﬁ[n(o)-no ] {‘—L‘Hﬁ%\[% %} (4-38)

From equation (4-30) the value of the optimal control for

a fixed-point boundary condition is then
u(?) = g coth[‘\/¢ (T-'t’)][no-n(?)] (4-39)
or in terms of the period limitation
w(®) = ] coth[wy(t-2)] [n=n(v)]  (4=40)

The power level response as a function of time is given

by the relation

n(z) = n, + [n(o)-nO] sinh [u)i (T-T)]

(4-41)
STk [ wy (T3]
and the optimal control reactivity is
P(T) = - [n(o)-no],ewl;l COSh[wl;l(Tf-'l')] (4-42)

nesinh WET + n(0)-n.] sinhfw ! (1-7)]

Figure 6 compares the optimal pdwer level response
of equations (4-22), (4-23), and (4-41) for the fixed-point
and free-point terminal-boundary conditions. Figure 7
compares the optimal reactivities corresponding to each of
these responses.

If the control interval is allowed to approach
infinity the solution of the feedback gains are obtained
from thelr steady state solutions. Only the free-point
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condition 1is considered. This 1s seen to be identical with
the free-point case where §6T = Lué as expected. Equations
(4-23) and (4-27) correspond to the optimal power level
response and the feedback reactivity in this situation.

The dashed extensions to the curves of figures 6 and 7
represent these conditions.

Thus far the question of saturation has not been
considered. 1In other words, under certain conditions the
maximum inverse perlod could be exceeded with the feedback
control systems alrgady determined. 1In first-order examples
the treatment of saturation is not difficult for the
infinite 1ﬁterval solution. 1In this case, as pointed out
in chapter 2, the minimum Hamiltonian is a constant. The
optimal control is the control which remains in the admis-
sable control space and maintalns a constant Hamiltonian.

The result for this case 1is

nic) = K1+rng

(= “max

w(t) ={  wg[ng-n(2)] (1-P)ny = n(2) = (14P)n,

u

\  Ypax 3 n(r) < (1-P)n (4=43)

The corresponding optimal reactivity is

(- (1+P)ny/n(7) s n(T) > (1+P)ng

(1-P)nof=_ n(t)=< (1+P)n°

T) = 1+P n
4o
(1+P)n, (h-44)

> nh:;

n(t) < (1-1>)no

-e
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Figure 8 1s a plot of the optimal reactivity for a maximum
allowable perturbation in power of }50%, i.e. P = 0.5, as
a function of n(?)/n,.

In this rather highly oversimplified example of &
nuclear reactor model a great deal of insight to the problem
of optimal feedback control synthesis has been gained. It
is not difficult to see that the extension to higher-order
examples, or even first-order non-linear problems, could be
a cumbersome task. Most of the design considerations have

been demonstrated in thils exanmple.

Non-Linear Prompt Neutron Reactor Synthesis

The previous example will now be used to demonstrate
the techniques of quasi-optimal control for non-linear
dynamic processes. In this case, however, reactivity 1is
considered as the control variable. The reactor model,
here repeated,'is

n(t) = _2(t)n(t) (4-L5)
£

The quadratic performance index is chosen to be

e(7) = ¢T[n(T)-no]2 + ft T{q&[n(z')-no]z + Q(z')z}d“c (=46

Note that reactivity errors are weighted directly here.
In this, and all first-order examples to follow,
the problem will be confined to an infinite control interval

where T = 00 . This is not necessary for non-linear control,
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but when a reactor is operating in the steady state, it is
usually desirable to do so for extended lengths of time.

In such cases the control interval is much much larger than
ﬁhe characteristic time constants of the system.

For this example then, the exact non-linear optimal
control is solvable using the results presented in equations

(2-32) through (2-36). The error criterion becomes
fm ® 2 2 s
o) = | = H[n,par =L {¢[n(t)-no] + ol2) }ar (4=47)

From equation (2-36) the optimal value of the time derivative

of the reactor power 1is

n*(r) = H - C = A*(T)n*(7) (4-48)
aHZaﬁ ,zn

When the control interval is infinite, the terminal value
of the power level 1is equal to the nominal value, n,, and
P(T) = 0. Thus the constant of integration C vanishes as

seen from equation (4-47). The derivative at any time is then

n(z) = __H (4=49)
28/ 2 1
where H=cb [n-no]‘2 + n2f? (4-50)
n<

using the definition of ,o(z) in equation (4-47).
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Taking the partial derivative and solving for n(T)

n(T)[ﬁ(T)—no]\[Er
£

a(r) = ¥ (4-51)

The exact optimal reactivity for the infinite interval control
then is

P(T) = /g [no-n(x)] (4-52)

In thls speclal case, the optimal feedback reactivity 1is
a linear function of the deviation of the power from the
nominal value,

This 1s a very slmple control to synthesize, but
in order to demonstrate quasi-optimal techniques, the
methods of Pontryagin and Bellman are applied and equation
(#4-52) is used as a basis for comparison. First, Pontryagin's
maximum principle is considered.

The perturbed state and control variables for this

vade are

Sp(z-) = (%) and fn(t) = n(z) - n (4-53)

o

The linearized differential equation that describes small

perturbations about the nominal values of n = n, and Q:: 0, is

on = ny 8 | O (b-5k)
Z

and the constrained Hamiltonian is

H, = Poén2 + 5'02 + Ang 3@ (4-55)
£
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The necessary conditions for a minimum are

ch=o=28@ +An (4-56)
(% L
and dHe = - A = 2¢ on (4-57)

o dn
Now A(Z) is assumed to be of the form
A7Z) = k(T)n(?) (4-58)
and k(T) is found from the relation

- k(7)) = - 2¢ + x(7)%n,? (4-59)
2 22
The steady state solution is required for the infinlte

interval problem and thus

k(z) =+ 24V (4-60)
. no

Combining equations (4-56), (4=53) ana (4-0VU) une yuasi=

optimal reactivity of the maximum principle is

8p(z) = (%) = [ [no-n(7)] (4=61)

This 1s seen to be identical with the exact optimal
control of equation (4-52). This is as expected, since the
maximun principle yilelds a quasi-optimal control which is
truncated at the first-power of dn(r) and equation (4-52)
1s linear in &n(7).
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Since elther the exact or the maximum principle
glve ldentlcal synthesis controllers, it would be unnecessary
tovconsider a quasi-optimal control based on dynamic program-
ming. However, in this example additional results are found
using dynamic programming. Also, in ordet to demonstrate
the technique, this controller is evaluated for any arbitrary
Pth-degree expansion of the minimum error function. Equatilons
(3-95) through (3-103) gives the required format of this
technique.

The Pth-degree expansion of the minimum error function

is
E, = kKo - 2kqn + kpn? + ...+ 2 k,nP (4-62)

The pth—degree Hamiltonlan 1is

' - - 2 2 -
By = @ [n(m)-ng]® + p(x)® + Ptﬂn'k [Dan] (4-63)
The control which minimizes (#-63) 1s
Pp(T) = - % nzgrz [E_EE] (4-64)
on

Thus minimum Hamiltonlan is

@ [n(v)-ng ? - f%"ﬁi[%]z (4-65)

2
Hg+H*1*n+H5n +...+H; nP (k=66)

HI')*

]|



82
For the infinite interval problem the kJ functions

are all equal to zero and thus H* are all zero also. The

J
Hg functions are defined by equation (3-99).
For a first-degree expansion of p = 1
E, =k, - 2K4n (4-67)
@, = kin (4-68)
“Z
and Hi* = ¢(n-no)2 - nk4? (4-69)
27

It 1s not necessary to find the Hg function, because the

feedback control does not depend on it. The value of k

1
is found from
H¥ = 0 = [[Q H!* 2
B
° Z n:no
Thus k1 = 0 and Pl = 0 for all time,
For the second-degree expansion
E, = ko - 2Kqn + kon? (4-71)
€ = kqn - Xk n? .
2 1 2 (h-72)
£ £
and Hi* = ¢ (n-n )? - %g [k12-2k1k2n + k22n2] C (4=73)
The equations necessary to evaluate the gains k1 and k2 are

- £%pn, + 3kkon 2 + bkyn ? = 0 (4-74)
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and - L2 P + k2 - 6kkpng + 6kyPnE = 0 (4-75)
From the above equations it 1s seen that

ky = kyng (4-76)

and the solution is

ky =f\§ end k, = LVP/n, (4-77)

The quasi-optimal control then 1s
(7) = -n? (4-78)

0 VE [

It can readily be shown that the general expression

for the reactivity for the pbth-degree expansion is

o (T) =n0\/$[1 -_erl_‘t_)_-(l-r_l_é}l P] (4=79)
o (o}

The welghting factor ¢b 1s determined to be

= 2

P = [ pmax] (4-80)
Pn,

Here a maximum reactivity is assumed to be the constraint

rather than a period constraint, because the error crlterion

directly weights reactivity. Equation (4-79) is now written

No

Pp) = Pm%x [1 - n(T) - (1 - n(z) )p] (4-81)
nO
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A comparison of the quasi-optimal reactivity of
equation (4-81) for several degree expansions with the
exact optimal reactivity (also the maximum principle) 1is
indicated in figure 9. These curves indicate the reglons
of validity of the quasi-optimum control. For odd-degree
expansions, equation (4-81) is not valid for perturbations
greater than twice the nominal value, becuase positive
reactivity results. For even-degree expansions the approx-
imate control deviates far from the optimal for deviations
grea ter than 2n,, and become very large negative, The

range of valldity 1s restricted to
0 = n(T)= 2n4 (4-82)

The equal signs are not included, becuase for these values
unstable transitions occur, at least for odd-degree expansions.
In the range of validity, convergence to the optimal 1is
sohiavad far aarh successive exvansion,

Whereas this example i1llustrates that an unstable
control is achlieved from the dynamic programming approach,
the other non-linear examples in this chapter show that the
quasi-optimal control of dynamic programming is not only
stable, but superior with respect to accuracy. Not only
1s the dynamic programming example undesirable with regard
to accuracy, but the complexity of the feedback controller
is greater than for the maxlmum principle. Figure 10

1llustrates the controllers for equation (4-61) and (4-78).
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Linear Delayed Neutron Reactor Synthesis

The reactor dynamic process chosen here includes .
an intrinsic negative feedback mechanism representative
of the delayed neutron effect., Steady state operation 1is
assumed, and the pseudo-control variable, u = ()n/z y 1s

used. This model 1s represented
A(T) = u(x) + 4 [ng-n(7)] (4-83)
y/
The error criterion chosen 1s

e(t) = Lw{¢ [n('l‘)-no]2 + u(‘r)z}d‘t (4-84)

The necessary condition for a minimum control 1s written

°T  u(7) 2n
(4-85)
The optimal control is determined from equation (4-85) to be

2E + min {cp[n('c)-no]?- + u(r)? + [u(’c) +%’[no-n(r)]]ﬂ}= 0

u(r) = -1 2E (4-86)
2 2n
and the solution, as before, 1s
E(n,T) = k,(t)[n(2)-n | ? (4-87)
The galn k,(7) satisflies
k, (2) = ky2(2) + _.2;2@_ ko (T) - ¢ (4-88)

The steady state solution is sufficient and thus k,(T) = 0.

2
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k, = - 7@_ +\/(/I3}2 + @ (4-89)

and the optimal feedback control, from equations (4-86),
(4-87) and (4-89), is

u(e) = -[74_ -(4)? +¢][no-n<~c)] (4-90)

Here agailn, ¢ i1s determined from the period constraint and

The result is

the maximum allowable deviation in power, n . = (1+P)ng.

2

® = unax (4-91)
(Png)Z
For this case Unax is written
Ynax = (2) Npax = ﬁi(no‘nmax)
Nimax

(4-92)

n§ [(1+P)¢...Jm + g’@_]

The amount of control reactivity to maintain n =0 for an

impulse in power of (1+P)n, 1is roughly Prax = PB. Thus

Wy = Puax = 22 (%-93)
> £

Substituting equations (4-92) and (4-93) into equation

(4-91) the weighting factor 1is written

@ = (4 + 2P + P2)B (4=94)

2
£2
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The optimal feedback control for equation (4-90) is then

written

u(g) = ’ogm%.us [\/5+2P+P2 - ] [no-n(t')] (4-95)

A new variable, corresponding to a weighted inverse perlod,

is introduced by
u(z) = wy' [n,mn(x)] (4-96)

The optimal feedback reactivity is

=w''[n -
P(T) = w) [ﬁ'('%)'—l] (4-97)
Equation (4-97) 1is seen to be very similar to the reactivity
for a prompt neutron model of equation (4-44) Af 2 s
equivalent in both models. With delayed neutrons the
feedback reactivity differs by a factor here defined as
f}(P). Equation (4-97) is rewritten

7= w! QP o -1 (4-98)
e = wh N [_n%?). ] 9
where QUP) = ' = (P +1) (4-99)
wé 5+2P+P -1

Figure 11 is a plot of ()(P) versus P and shows that it
never deviates by more‘than 20 per cent from unity. This
indicates that the linear optimal control for prompt neutrons
only, very nearly represents thé optimal control when delayed

neutrons are considered regardless of the value of /3 « The
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only variables that need be specified are the minimum reactor
period and the maximum allowable deviation in power.

An important result here 1s that the measurement of
reactor power 1s the only state required, eliminating the need
to calculate precursor densities. Such a feedback controller
appears 1ldeal for steady state operation of power reactors
where internal noise and small external fluctuating loads
occur. Boiling water, pressurized water, or even SNAP reactors

are examples of this case.

Non-Linear Delaved Neutron Reactor Synthesis

Here, again, the model represents the effect of
delayed neutrons, but the error index weilghts errors in
reactivity separately, rather than the control pn/f . This

1s the non-linear synthesis problem requiring the quasi-optimal

techniques already demonstrated. The dynamic process 1s written

A(T) = _PE@n(*) + A [ng-n(7)] (4-100)
£ P )

In this section it is demonstrated that dynamic
programming quasi-optimal control of an-degree is superior
to the maximum principle. It is also demonstrated that a
2nd_degree Taylor expansion of the exact optimal control
equation (the maximum principle is a 1St.degree expansion)
ylelds a region of unstable control, whereas no limitations

result from dynamic programming.
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The error criterion for this study is
© 2

e(t) :f {¢[n(’t)-no] + (J(T)Z}d’t‘ (4-101)
t

In the infinite interval problem the exact optimal control,
using the results presented in chapter 2, is given by

- - - 2 -
R(T) = ﬁ[ %%?)'][ 1 1/d>nﬁgz£ + 1] (4-102)

The weighting factor gbis determined from the reactivity

constraint. If P is the maximum allowable fractional
deviation in power, then P/ 1s roughly the maximum compen-

sating reactivity required to maintain n = 0. Thus

? - (2]

and the optimal reactivity 1is

p@ =pf1-m |l 1- fivam?] (4108
r oY

L LL\(.[JL

The maximum principle quasi-optimal control, and a
2nd-degree Taylor expansion of the optimal control equation,
are directly obtainable from equation (4-104). The maximum

principle quasi-optimal control equation is

P1(7) = ﬁ[‘fé-i][ 1- aﬁl] (¥-105)

n,

and the 2Md_degree expansion glves
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P,(7) = a[(zﬁ-a) + (5-3y2) n(®) + (43-2) n(x 2] (4-106)
No ' )
The dynamic programming approach of approximating
the minimum error function has been carried out for three
separate expansions, namely; P = 1, 2, and 3. The results of
these expansions for the infinite interval problem are present-
ed here wlthout the assoclated mathematical details. The

three resulting quasi-optimal reactivities are

K31 =0 (k-107)
= - - 2 4m
2,(2) = B[Z 1][ a®) - a(e) ] (4-108)
_ 2
and /93(1) = Ag[(zgfﬁ) né:) + (3—2#5) ngzg
(4-109)

ME=ETS

Figure 12 1s a plot of equatlong (k-104), (4-105),
(4-106), and (4-108). Here, the comparisons are indicated
between quasi-optimal control and the exact non-linear control.
Several features are demonstrated in this figure. In the
region where n/no 1s less than unity, the maximum principle
control deviates significantly from the exact optimal, but
the an-degree dynamic programming control is very ﬁéarly
identical. Furthermore, a control based on a 2Nd.degree
expansion of the exact optimal renders an unstable system
for n/n, less than (1 - 1/Y2). The higher-degree dynamic

programming controls convergé rapidly to the optimal,
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Therefore, in thls example dynamlic programming
ylelds a more nearly accurate quasi-optimal control. The
maximum principle does not produce an unstable control system,
however, and is less complex to synthesize. 1In thls case
also, the exact optimal control given by equation (k-104)
would be very complex to synthesize in contrast to the exact
non-linear control law for the prompt neutron model.

Thus, in selecting the appropriate quasi-optimal
controller, the cholce remains between control system
complexity and desi;ed system performance. From the two
non-linear‘examples presented, it is evident that each
control problem is unique and generalizations are not easlly
made. It can be said, however, that no state-determined
quasi-optimal controller is less complex than one obtained

from the maximum principle.

Another Non-Linear Reactor Model

F1nally, 8 I1rSU=OTUer Uylawlt muusl 1o vuLo IuLl LA
which is non-linear and includes an additional intrinsic
feedback reactivity. The purpose here is to demonstrate
that the optimal (or quasi—optimal) compensating feedback
reactivity 1is capable of maintaining a steady state operating
reactor even when the intrinsic reactivity may be positive.

The non-linear model chosen incorporates a power
coefficient of reactivity into the model of the last section.
The model 1s

n=mon+ x(n-ngn + _@;(no-n) (4-110)

s y;
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where Ci(n-no) is the reactivity due to a perturbation in
power., The control variable 1is P . In order to compare the
optimal control of this model with that of the previous
section the same quadratic error criterion is chosen, and

here repeated
E =f {c;b [n(’t)—n ]2 + (JZ(T)}dT (4-111)
t o

The exact non-linear optimal control which satisfles the

above error criterion is determined to be

o - Bl 5 5

-[1 -2 00/30)2] 222 }%}

Equation (4-112) reduces to the optimal control given by

e

(4-112)

ANo| n +[1+
3 | ng

equation (4-104) of the previous section when f;;g =0,

as cApeGiesd. Tiguss 1) is a piuv ol Lo Tavic  [SO2 ez

equation (4-112) for several values of Xn_/@B , both posi-
tive and negative, as a function of n/no. As expected, for
positive feedback (OCno/ﬁ greater than zero), relatively

more compensating control effort is required than for

negative feedback,

For negative feedback the system is more stable than

the model where no feedback occurs and 1s of l1little importance

here. For positive feedback, however, the problem 1s more

interesting. The quasi-optimal controls for dynamic
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programming using a second-order expansion, for the maximum
principle, and for a second-order expansion of equation
(4-112) about n = n, are given in equations (4-113) through
(4~115) respectively. A comparison of these equations with
the exact optimal for n, =/ 1s 1llustrated in filgure 14,

= - 2 _ 1[n - n2 -
Ppp = Bs -1 +Vs? - 25 + 2] B 2_0_2] (¥-113)
PMP=/3[S-1+V32-2S +;]-1-n_- (4-114)
- nO .
and Py = ABfs =1 +Vs? - 25 + 2] [1-;1_-[1
- Po - (4-115)
e [
Vs2 - 25 + 2 ( fo
where S = on (4=116)

It 1s seen that the second-degree dynamic programming

annat+t Aav amrmance wall with +tha avarnt anlntion while ecauations
arnve T oreae el ) b

(4-114) and (4-115) deviate quite far. The second-degree
expansion of the exact optimal, given by equation (4-115), 1is

seen to yleld an unstable system for n less than no/2.
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Chapter 5

HIGHER-ORDER NUCLEAR REACTOR SYNTHESIS

Introduction

The application of both linear optimal, and non-
linear quasi-optimal, feedback control synthesis for three
higher than first-order nuclear reactor dynamlc processes
1s studied in this chapter. Each of these problems, when
extensively evaluated, would comprise a large study. However,
each problem is concerned with a different aspect of reactor
control, and many facets of the control problem are demon-
strated in the combined studies.

A linear reactor model, described by prompt-neutron
multiplication together with delayed neutron feedback (with
no other intrinsic reactivity feedback), 1s first considered.
Optimal feedback gains are determined for the infinite-
interval control problem. A one group model 1s used to show
approximately how sensitive the equatlions required for a six
group model are to changes in reactor lifetime,

Next, a synthesls of a nuclear reactor power transfer
from 10 kilowatts to 50 kilowatts for a non-linear reactor
process with intrinsic feedback reactivity proportional to
power, 1s evaluated. A slightly different control variable,
namely rate of control reactivitj, is chosen., This is the
first example where a finite control interval is used., The

100
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nominal trajectories for both state and control wvariables
are chosen to minimize the control energy during the transfer,

Finally, start-up of a nuclear rocket engine is
syntehsized. Several different aspects of a control prob-
lem are introduced in this example. A binary control system
1s needed for rocket engine synthesis, In addition to a
reactivity control mechanism, the flow rate of 1liquid
hydrogen propellant is also a control variable., The nominal
control trajectories have discontinuities at three different
switching times. The resulting quasi-optimal time-varying
feedback galns are also discontinuous. Analog and digital
computer synthesis is demonstrated for this problem.

These studles are by no means complete. However,
they do effectively indicate some of the considerations
required for higher-order synthesis. These are fairly
realistic problems, although they are considerably simpli-
fied for this.work. For example, in most situations measure-
ment errors and large fluctuating loads may be incurred.
Stochastic optimal control theory would be needed for an
adeduate evaluation (4). Generally the point-reacter-kinetics
model is too simple to represent the overall reacter perform-
ance during dynamic operation. Kliger (6) has studied the
optimal space-time-dependent reactor synthesis problem and
the optimization methods presented in this work apply stralght-
forwardly to this case, In some cases the transient response

of the system may be more important, from a performance
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standpoint, than the accumulated errors. Frequency-domain
control synthesls can easily be incorporated in such instances.

The ultimate usefulness of optimal control theory
wlll be decided on the basis of how easily the synthesis
problem can be evaluated. In higher-order non-linear
problems many special technlques must be utilized in the
construction of the controller. For example, special
digital or analog computer programs are required for the
solution of the gain equations. A great many approximation
techniques may be required. However, most of these limita-
tions are surmountable and generally a satisfactory quasi-
optimal coﬁtrol system results, Fortunately, a large amount
of flexlibility is possible with the techniques of time-domain

synthesis as evidenced in this work.

Delayed Neutron Reactor Synthesis: Six and One Group Models

In order to introduce the application of optimal

contral +hanantr +A +ha WS rbhAarn AnAaw mma T Ame P I RN
i >y T Tl r

B T e m e~ e —e—— j v s

reactor example is chosen first. The reactor process in
thls section is described by a seventh-order dynamic process
including state variables of reactor power level, and six
delayed neutron groups. The pseudo-control pn/,Z is used.

The mathematical model is

6
n=u-ABan + Y Ac (5-1)
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In this case a feedback controller is desired that
minimizes errors in both power level and precursor densities
from their nominal values. The infinite control interval

error criterion may be written

e(t) =/t‘°°{¢n[n('c)-n*(’t)]2 + 121 Pe,y [ci(’t)-c"{('t)]z

) (5-3)
+ [u(’t)-u*('l')] }ar

The solution to the linear optimal control problem
1s given by the Riccatil matrix equation in chapter 3. The
necessary system and input matrices for the dynamic process

are

9

[ BN X X3 M As A6
B/l - A1
BolL - A
A= B3/ - A3 B =
(P L/k = Ay
B/l - 25

/36/£ - A4 |
- ]

O O O -

(5-4)

c

o O

and the weighting factor matrices are for state and control

variables are
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o= |. Pe,, | (5-5)

with V=1 (5-6)

The matrix of feedback gains is symmetric and written

g

k11 Xy K3 X Kis Ky 19
' K22 k23 Koy k25 26 k27
S T T T

K =K'm, . . Ky Ky Ky Ky (5-7)
. . . . koo koo kg
N
Le . . . . . k77j

The Riccati matrix equation is here repeated:
. -1_T
K = -aTk - kA + xBY 1BK-CI) (5-8)

For the infinite-interval problem the steady state
solution of equation (5-8) is required. Thus a non-linear
algebraic equation in the paramzters k1j must be solved,

The feedback gains are seen to be sensitive to the specific
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reactor parameters /3, /81, Ai and /. The meost sensitive
of these parameters is the assumed mean neutron lifetime
of the reactor system, £ . The parameters A3, /31 and A4
are functions of the type of fuel utilized and overall welght
that delayed neutrons have in the neutron generation cycle.
The numerical values of these variables are generally known
fairly accurately and errors in the solution due to these
variables are never great., The neutron lifetime Z, on the
other hand, is difficult to determine for dynamic operation.
Zero-power-reactor frequency-domain studies are generally
used to determine this quantity, but if many non-linear feed-
back effects are present, the value of £ may be in error by a
large factor, If,e 1s not known accurately, however, statisti-
cal control theory should be used and a basic barrier to the
problem is encountered.

The feedback gains are seen to be independent of
the nominal states of the system. Thus, once the steady
state solution of equation (5-8) is computed for a given set
of reactor parameters, a feedback controller built of constant
gain elements is sufficient for all operation no matter
what nominal control and state variables are required,

The optimal feedback control equation 1is

6
u = u¥* - kll(n-n*) - 12;.1 k1(1+1)(°i"°§) (5-9)

and the optimal feedback reactivity is
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6
/—7 = [u* - k11(n-n*) -~ 1Z=1 k1(1+1)(01'0"{)] (5"'10)

TN

For adequate performance the selection of welghting
factors 1s very important for this seventh-order process.
These must be determined from the performance requirements,
Equation (5-10) indicates that an auxiliary device 1is
required to convert the pseudo-control to a reactivity
control. The schematic of the optimal feedback control
system is that given in figure 4 of chapter 3.

An indication of how sensitive the feedbacx gains of

the dynamic process are with respect to the mear neutron life-

time AZ, can be obtained from a one group approximation of

the six group model. The approximate dynamic process 1is

n=u-2n+le (5-11)
4
¢ =/4An- Qe (5-12)
V4

The abbreviated error criterion is

e(t) =f°°{¢n[n<r)-n*(”c>]2 + @[ c(T)-o* ()] ®
’ (5-13)
+ [wm)-ur ()] Z}ar

The system matrix and the input matrix are respectively

- 1
A = AL A and B = (5-14)

AL -2 °
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The resulting gain equations that must be solved are

1.‘11 = Z-f- (kyq - kgp) + k112 - Pp (5-15)

kyp = ﬁ; (kyp, = kp2) + A(kyp = kqq) + kyqkqp
(5-16)

kpp = 2 A (pp = kp) + kpp? - Py (5-17)

where the k1j are typical elements of the symmetric matrix

kyq kqp
K =K = (5-18)

Kip ¥pp

The steady state solution of equations (5-15) through
(5-17) 1is obtainable analytically. Only k44 and k,, are

required for the optimal control equation, which is
w(z) = wh(r) - kg, [n(2)-n*(7)] - kpp[e(2)-cn(2)] (5-19)
The solutions for these gains, with an = 0, are
K -8 + A] +
11 [Z \/

PR

§+ A) 12N, + ¢; (5-20)

and k 2

12

+ B2
A 2

e, + ¢>n]é} o

Since the gains are analytical functions of the
generation time, a quantity that represents the effect of

perturbations in ,Z can be introduced here., This function is
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termed a sensitivity function and is defined by the equation

s§(z) = Sy(z)/v(z (5-22)
§x/x

In this case y(z) corresponds to kll(f), x corresponds to £ ,

and Ox corresponds to O . Thus
Y = Kyqo z =0 and x =4 . (5-23)

The sensitivity function associated with k11 is

N 2+ g2V, + ¢>n]/ﬁ2>'?}f (5-24)

Sil(l) = {(1 + _/%jﬁ_

Thls function expresses information concerning the changes in
stability of the control system due to the non-exact determina-
tion of the mean neutron lifetime. It also indicates in
what way errors are introduced if £ is a variable parameter
during the dynamic operation. Figure 15 i1llustrates the
Voliaviur Ul LuS STEHSLIULViILY LUNULlon LU several values ol

the weighting factor ¢ . The values of B and A were

arbitrarily set equal
B = 0,01 and A= 0,1 sec™! (5-25)

Several qualitative features are indicated in this
figure. For values of £ 1in the range typical of most
reactors, namely 10"9<Z< 10-3 seconds, the gain is a very
sensitive function of neutron lifetime. It is easily seen

from equation (5-20) that as /——O, k., and figure 15
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indicates that, depending on the value of gbn, this may fall
in the region of prime importance in nuclear reactor control.
From this figure, a very good idea of what qbn should be to
reduce gain sensitivity may be obtained. Qualitatlively,
the greater the value of ¢ (or A on the figure) the less
sensitive kll is to perturbations in 4 . Zero sensitivity
is desirable since this indicates that the gain k4 1s
approximately constant with respect to Z . The transition
is seen to occur over apprcximately two decades of values
of 4, and @, should be chosen such that the appropriate
approximate mean neutron lifetime falls near the end-point
of this transition where S=0. The gain must not, however,
exceed physical limitations of the controller and this will
place a constraint on the weighting factor ¢,. The smallest
qbn which most nearly satisfies these considerations should

be used.

Synthesis of Reactor Power Transfer

The problem of optimal power transfer of a TRIGA
typve nuclear reactor was studied by Rosztoczy (11, 12). 1In
his study the optimal state and control variables were
dete-mined so as to minimize control rod energy while trans-
ferring the reactor power level from 10 kilowatts to 50
kilowatts in 0.47 seconds.

A bare thermal reactor, with an intrinsic feedback
proportional to reactor power and one group of delayed

neutrons, was used. The reactor kinetics are described by
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the equations

n = -

on® - Bn + Ac (5-26)
Z Z

Qe

£Ln
VA

= /ABn - )c (5-27)
J4

where € is greater than zero, and X'n represents the
power-feedback reactivity. Prior to the transfer process,
the reactor is assumed to be in the steady state with the

initial conditions

n(0) = n_ = 10kw, C(O) = Cc_ = Bno (5_28)
O fo) —_—
£ A
The problem is to increase the power level to

50 kilowatts while minimizing
T *
e(t) =f [f)]? at (5-29)
o)

The mate Af chance of reantivitv. O . is considered to be a
z ¥

control variable and /0 is considered a state wvariable in

this work. Thus the dynamic process is described by equations

(5-26) and (5-27) together with equation (5-30):

fﬁ =u (5-30)

Figures 16, 17, and 18 show the open-loop optimal
(or nominal) state variables, P* and n¥*, and the open-loop
control variable, fﬁ*, for this problem. Constant accelera-

tlon control is required for minimum energy.
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To synthesize this problem a closed-loop controller

1s determined to minimize the quadratic error criterion of

equation (5-31).

o (0) -_-.'/;T:O.u?{d)nﬁ(z)-n*(’t)]z + ng[p(t)-P*(T)]z

+ [u('C)-u*(’C)] Z}d?: (5-31)

Note that no effort is made to weight precursor density errors

in this problem. This does not mean, however, that there

1s no need to measure this state variable. This only

indicates that no limit is placed on precursor density errors.
In this study a quasi-optimal feedback controller

1s found using the maximum principle. The linearized model

describing perturbations about the nominal trajectories is

represented

£11(7) A £q3(T) 0

Ax(T) = [ B/e -A 0 Sx(T) + | 0

lo 0o 0 J [1]

Su(r) (5-32)

where §x(Tr) = [gc_(’t)-_}g*('t)] = | n(T)-n*(7) (5-33)
c(Z)-c*(T)
P(T)-P*(T)
and du(T) = u(r)-u* () (5-34)
Also,

£11(8) = [p*(r) - 2%m*(z) - B] /4 (5-35)
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and le(T) = n*(T)/ XL | (5-36)

The Rliccatl matrix equation (3-82) must be solved for this

problem. The time-varying gain matrix K(T) is

K11 Kyp kg5
K=xkT=|. |k k) (3-37)
L] L] k33

The resulting quasi-optimal feedback control is

w(T) = wr(?) = kg5 n(0)-ne ()] - kys[e(z)-ox(2)]

- I3[ e (0= pr(7)] o

The differential equations that result from the expansion

of the Ricatti matrix equation (3-82) are found to be
y - 2 .
kg = k57 - 20k v Bly/E] - ¢y (5-39)

Kip = kyghyg - Akyy + Ak, - £k, = Bky/L (5-40)

kyg = Kygkgg - fy3K1q = f11ky3 - Bky3/l (5-41)
1::22 = k232 = 2Xky, + 2 Ak, (5-42)
K23 = K23%33 - Tigkyp - Ay + Mg (5-43)
k33 = k55" - 2fi3kyy - &g (5-44)

The boundary conditions for equations (5-39) through

(5-44) are given by the relation
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K(T=0.47) = [o] (5-45)

where all elements of [0] are zero.
Figure 19 illustrates the (time-varying) feedback

gain programs of k13, k23, and k as a function of time for

33
welghting factors of

10-6 sec—2kw—2

P

Ge =0
Pp 25 sec—?2 (5-46)

and ;b’= 1

and for assumed reactor parameters of

o = 1072 ky-1 A = 0.1 sec™!
/3= 0.0064 n*(0) = 10kw

(5-47)
£ =103 sec n*(T) = 50kw

T = 0.47

The digital computer was used to get the solution of these
gains (13).

In practice, time-varying feedback gains are not
desirable. The synthesis problem of this example was
simulated by means of an analog computer. Simulation of
the time-varying gains on the analog computer can be
accomplished either by direct solution of equations (5-39)
through (5-44) along with the simulation process, or by
reproducing these gains with function generators. The

first method requires more computer components than were
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available for this work. The latter method has the disad-
vantage that any changes in initial conditions or weighting
factors require reprogramming of the function generators.

For the simulation study of this example, the time-
varylng gains of figure 19 were averaged over the control

interval by the simple relation

- 0.47
Kina = 1 f k,(T)dT (L =1, 2, 3 (5-48)
13 O.E? o) 13

These constant gains are easily programmed on the analog
computer with coefficlent potentiometers. This further
quasi-optimal appréximation permits easy simulation for
many different average gain settings.

In analog computer synthesis the model and the
"physical plant" are simulated simultaneously. Two nearly
ldentical sets of dynamic equations are programmed; one
generating the nominal control and state variables, the
other contaminated with external nolse. 'Lhe contaminatea
system is driven by the nominal control program and, because
of the noise, deviates from the nominal trajectories.

The output error vector is computed, multiplied by the
qQuasl-optimal feedback galns, and added to the nominal control
variables., The result is a linear quasi-optimal feedback
controller,

Figure 20 shows the results of this analog computer

Simulation. Three different conditions are illustrated for
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the states of power level and reactivity. These conditions

are:
(a2) nominal open-loop trajectories
(b) open-loop contaminated state trajectories
and (c) the effect of closed-loop quasi-optimal control

on the contaminated trajectories.

The closed-loop constant gain settings for figure 20 were

kyg = 1.1 x 10-3 (kw-sec)=1
kp3 = 7.1 X 10=5 (xw-sec)~1
and k33 = 1503 (Sec-l)

From figure 20(c) it 1s seen that constant gain feedback
control can compensate for the noise to within one percent.
Constant gains were found to glve adequate perform-
ance when the amplitude of the noise remained below a
certain saturation level, where the system would become

tmotahla  Hawewew ac thece cains were increased. so was
the point at which compensation was exceeded. The simplicity
of using constant gains, in most instances, outwelghs the
difficulties of constructing a time-varying quasi-optimal

controller.

Nuclear Rocket Engine Start-up Synthesis

The dynamic behavior of a nuclear rocket engine with
a bleed turbo-pump or a topping turbo-pump propellant drive
1s approximately represented by the set of non-linear

differential equations (8, 9)
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n=rt-B n+ Ao (5-50)
V4
é = ﬁn - AC (5“"51)
Z
and T= n - T (5-52)
Mc T@

where the system state variables are n(t), c(t), and T(t),

and where

n = power

¢ = space-average (one group) precursor density

T = space-average core temperature
Pt = total reactivity
Mc = mean effective heat capacity of reactor core

TT = heat-exchanger thermal time constant

Equation (5-52) represents the heat exchange equation which
i1s coupled with the neutronics through core temperature and
propellant flow rate in the form of reactivity. This total
reactivity thus consists of the control rod reactivity Uq s
a control variable, the propellant density reactivity

Spp, and the temperature reactivity SQT:

Pt =uy + 8pp + 8p, (5-53)

where 9Py = op T(t) (5-54)

and Spp cpuz(t)/\/T(t) (5=-55)
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Here u2(t) is the propellant mass flow rate, also a control
variable. Thus two control variables are required for
dynamic operation. Usually the constants in equations
(5-54) and (5-55) are cp<0 and ¢, 0. Finally, the heat-
exchanger thermal "time constant"~1s not a constant, but

depends on the propellant flow rate:
Tp = (buy)~? (5-56)

where b is a constant of proportionality at rated design
flow rate.
For this reactor model, Mohler (8) has determined
a set of nominal optimal open-loop state and control variables
which minimize propellant consumption during the start-up

operation. The reactor system is subject to the following

constraints
ugsuy(t)suy
n(t)=
"max (5-57)
T(t)S Ty
-YB=pP.=TR
and 'i‘f'i'max =0C

where 7" is a positive number greater than 1.

Flgure 21 shows the nominal state variable trajec-
tories for core power and temperature with T = 1.6. Figure
22 shows the nominal control variable trajectories for this

case. The nominal control trajectories are seen to be
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discontinuous functions of time., Maximum total reactivity
1s initially applied in order to perform the start-up
operation in a minimum time. The first switching time, ta,
occurs at the point where the rate of core temperature rise
reaches its maximum value. At this time, control-rod
reactivity i1s programmed such that T remains at, but does not
exceed, 1ts maximum value. Beyond ta’ both reactor power and
temperature increase linearly with time. Figure 21 indicates
that both temperature and power reach their design values
simultaneously at ty while the propellant flow rate is
maintained at its minimum value throughout the control
period. Actually, if the nominal open-loop controls of
flgure 22 were used to drive the model of equations (5-50)
through (5-52), core power would not reach its design value
when temperature does. An additional switching time, say
tb, would occur very near the terminal time tf where a
short-duration control is applied to bring the power to
1ts design value simultaneously with the design value of
the_ temperature. However, a feedback controller designed
to minimize errors in the state and control variables is
used here to eliminate this switching time. Table I gives
the hypothetical design parameters of this study.

As in all previous examples the desired optimal
feedback controller minimizes errors in state trajectories

and control motions. The error criterion is
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TABLE I

HYPOTHETICAL NUCLEAR ROCKET ENGINE PARAMETERS

Maximum Reactor Power, Npax 2260 Mw
Minimum Propellant Flow Rate, u, L 1b/sec
Design Propellant Flow Rate, Usg 130 1b/sec
Design Maximum Average Core Temperature, Thax 3400 ©R
Propellant Inlet Temperature, T(0) 120 ©R

Mean Effective Neutron Lifetime,.& 3 x 10'5 sec
Effective Delayed Neutron Fraction, 3 0.0065
Design Propellant Reactivity, Spp(tf) 0.0065
Design Temperature Reactivity, SFﬁﬂtf) -0.0065
Effective One-Group Delay Constant, X\ 0.10 sec~1
Effective Core-Mass Heat Capacity, M, 1140 Btu/°R
Maximum Core Temperature Rate of Rise,(C 1800 °R/sec

First Switching Time, t, 0.08 sec

lerminal Switching ‘lime, tg 1.00 sec
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e(0) =ftf{¢n[n(r)-n*<?>].2 + Po[TiT)-T*(2)] 2

o

(5-58)
+ ]}i[ul(Tﬁ-uf(2ﬁ]2 + 'V%[uz(?)-uz*(%ﬁ]%}dt

Here again, errors in precursor density are not considered.
A quasi-optimal feedback controller based on the maximum
princlple 1is again evaluated. The linearized dynamic
process describing perturbations of state and control

variables 1is represented by

all(’Z') )\ alj('[) bll(/t) blz(t)
dx=| B/ -X O fx + |0 0 du
1/H, 0 a33(27) 0 b3, (T)
(5-59)
where 3n
du
2x = | 3¢ and du = [8 1] (5-60)
ST "2
and a44(7) = [u:" + cpT* + cpuy® - B]/l (5-61)
\’T*
a13('r) = l: o* - cp ug*n*}/ﬂ (5-62)
a33('z') = - bu,* (5-63)
bll(?O = n*/f (5-64)
blz(t’) = cpn*/lﬁ (5-65)

b32(?:) = - bT* (5-66)
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The Riccati-type differential equations that must be solved

to determine the time-varying feedback gains are

k.. = 2
kyq = Akyq© - 2BKyqKyq + Cky52 - 2ay.k, = 28ky,/4

(5-67)
- 2k13/Mc - ¢h
ki, = Akypky, - Bky Kp3 - Bkypkig + Ckygkpy - Akyy +
(5-68)
= 2
(5-69)

- (333 + all)k13 - ﬁ3k23/6 - kBB/MC

k,, = Ak

2
2o 12° = 2Bkjokpy + Ckpg? - 2 Akyy + 2 Aky, (5-70)

W.
|

= AkypKy3 - Bkigk33 - Bky3kpg + Chpgkzy - ayqky,

(5-71)
- A k13 - (a33 -A)kZB

e = 2 2
Kaq = Akyq° - 2BKygKqq + Ckgp® - 2a13K13 - 2833K33 = Dy

- - -

(5-72)
where
A(T) = B1g® + byp? (5-73)
Y1 Y2
B(?) |- b12b32 (5'74)
|
and C(2) = bg,° (5-75)
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The equations that describe the quasi-optimal feedback

control variables are

u, = ui -‘;%l [kll(n-n*) + klz(c—c*) + le(T-T*)] (5-76)
and

U, = uy¥ - b12 [kll(n-n*) + klz(c—c*) + le(T-T*”

¥

- 1_32 [le(n-n*) + kZB(C‘C*) + k33(T-T*)]

| &

(5=77)

Filgure 23 is a plot of the time-varying feedback
gains associated with the nominal trajectories of power and
temperature for the two control variables. The switching
time at ty <ty is included and the value of ¥ = 1.60 is
used. The gains were obtained from digital computer
solutions of equations (5-67) through (5-72) (13). The
gains for the precursor density are not illustrated; they
have the same general shape as those illustrated. For the

gains in this figure, the following relations hold:

ki, = ky1 ()b 4 (X)W (5-78)
le = k13(T)b11(T)/V (5-79)
Ky, = [kll(’t')blz(’c) + k13(z~)b32(’z)]/1r2 (5-80)
kop = [ky5(2)0,, (@) + 155005, @)] /y; (5-81)
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The weighting factors used to determine these galilns were
computed using the techniques presented in chapter 3.
They are:
yi=1
Y, = b ox 10~%  (sec/1b)2
(5-82)

2.5 x 10-10 (Mw=2)

| ®n
@

Simulation of the rocket engine start-up problem

10-10 (oR)=-2

il

using quasi-optimal feedback control synthesis was programmed
for the analog computer (14). As in the previous example,
time-averages of the gains of figure 23 were used to

further simplify the study. The average galn settings for

most of this study were

ky, = -1x10-6 (Mw~1)
Xy, = =3x109 (Mw~1)
Ky p = 2x10~8 (°r)-1
(5-83)
k, = -2x10-5 (1b sec~1 Mw~1)
Ky, = -6x10-8 (1b sec=1 Mw=1)
Kpp = 5x10-6 (1b sec=! op~1)

Here again, both the model and the "physical plant" were
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simulated together. The entire feedback controller was
constructed of analog components. In the actual tests of
KIWI nuclear rocket engines and the ROVER engine the nominal
variables, including controls, vower, etc., are in fact
simulated via the analog computer.

Figure 24 shows the contaminated open-loop control
variables used in this study. Figure 25 is a plot of the
resulting open-loop power trajectory and shows the effect
of closed-loop feedback control for the gain settings of
equation (5-83). 1In figure 26 the average core temperature
for open-loop and two closed-loop conditions are shown,

The feedback effect is obvious, The gain vectors ky are
given by the equation

k, = (1 =1, 2) (5-84)

-RZTJ

The figure illustrates that the greater the norm value of
the vector k, the better the compensation. The norm is

deflned as

lell = (k) (5-85)
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and is representative of the length, or magnitude, of the

vector in the six-dimensional gain space. The gain vector
52 corresponds to the values of equation (5-83).

In this example, as evidenced from the figures,
Quasi-optimal control appears to glve adequate compensation.
The actual control synthesis problem, however, is non-linear
and very much more complex than in this example, More
extensive simulation is required to investigate other
conflgurations. Dynamic programming might give a better
performance controller. It is felt, however, that the

usefulness of this technique is substantiated here.
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ABSTRACT ,“/ @ @ %

The sole purpose of this work is to develop a
technique by which lower order models can be obtained for
linear control systems. This technique is based entirely
on Liapunov V functions and thus serves to extend the
usefulness of Liapunov functions from strict stability
analysis to relative stability analysis. Previously,
Liapunov V functions could serve only to determine the
stability or instability of a system by considering the
nature of the surface described in the state space by this
V function.

With this modeling technique, relative stability
can also be determined by observing the behavior of the
model. Using this technique, models of aiy ordcr can be
developed for a given control system. Ul particuirar
interest in the field of analysis are the second and third
order models.

For systems with no zeros the second order model
and the phase margin model are shown to be approximately
equivalent. This is a highly interesting result since the
models are based on two entirely different philosophies~-
one is developed in the time domain and the other in the

frequency domain.

viii
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The third order model developed from Liapunov V
functions is a better approximation to high-order systems
than the phase margin and second order models. It is
conceivable that a fourth (or higher) order model would
give an even better approximation but the amount of wﬁrk
necessary to obtain this model makes it impractical.
Unfortunately, systems with zeros complicate the modeling
process. While the method is still valid and workable,
difficulty arises in interpreting the results of the

method. Chapter 5 discusses this problem.

puIRo
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CHAPTER 1

INTRODUCTION

l.1 Introduction and Statement of the Problem

In the present state of the art, the most success-
ful and widely used methods of analyzing linear control
systems are fabricated on the frequency domain. Such
methods are phase margin, M-peak, M-circles, and root
locus.l Recently however, considerable interest has been
shown in finding a method which is entirely dependent on
the time domain and in particular the Second Method of
Liapunov.z’ by, 6, 7

One such method considers upper and lower bounds

7

prlaced on the Liapunov V function:
V[zc_(O)] e~%1t <V [ﬁ(t)] <V [;ﬁ(O)J e 2"

When o = al = az and & is a linear combination of the
eigenvalues of the system, then equality holds. Unfortu-

nately, analyzing the system with V [E(tﬂ = V[:EKO)] o0t
is essentially equivalent to finding the exact solution of
the given system and hence this method, while interesting,
1 and a2 are not combina-

tions of the eigenvalues, then the bounds may be too loose

is of little value. Further, if «

to give a good indication of the system behavior. Another

1




approach proposed by Rékasius6 utilizes a model as an
optimum system to measure the performance of higher order
systems. However, the use of this method has not been too
successful.

Thus all of the existing methods based on the Second
Method have been particularly disappointing. This paper
presents a new method which, it is hoped, will fill the gap
that now exists. This method determines a model which is
an approximation to a completely specified system. The
model can then easily be analyzed to determine the response
of the system.

To find this lower order model, a method of fixing
the free parameters of the model must be found. Such a
method already exists which used frequency informationj; it
is called the phase margin model (Appendix B). By matching
frequency and phase margin at crossover of a second order
model to that of a given system, the model is completely
specified and can be used to determine the behavior of a
given system. Compensation of a control system is accom-
plished by picking a phase margin model with the desired
characteristics (phase margin and crossover frequency, for
example), and then adjusting the parameters of a compensa-
tion network to give a system with the same phase margin
and crossover frequency as the model. In effect, the

system which yields the desired model has been found.
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Contrary to the bhase margin technique which
utilizes frequency domain information, the method offered
here depends only on time domain information. In fact, the
method operates directly on the differential equation
describing the given linear system and yields a lower order
differential equation as the model. This method is called
the V surface modeling technique; and, as its name indi-
catesy it utilizes Liapunov V functions.

The first advantage of the V surface model over the
phase margin model might be esthetic, in that the model is
entirely'dependent on the time domain where the performance
of any system must be finally analyzed and not on the
artificial frequency domain. Second, the method is readily
applicable to digital computers. Third, while the phase
margin techniques can yield only a second order model, the
V surface modéling technique yields a second order model
which is similar to the phase margin model and also any
higher order model.

In particular the third order model is investigated
in some detail, and is shown to give better results than
the phase margin model (and the second order model).
Finally, it may be of some interest that Liapunov functions
may be used in the analysis and synthesis of linear control

systems and not merely in determining their stability.
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l.2 Outline of the Work

In the following discussion, this V surface modeling
technique is developed for various type; of systems and
then compared to the existing phase margin technique.
Chapter 2 is a brief introduction to the concept of the V
surface modeling method and gives the general procedure for
finding a kth order model of an nth order system (k<n).

Chapter 3 deals exclusively with second order
models. A second order model is developed in Section 3.1
along the lines suggested in Chapter 2. Unfortunately this
model, while perfectly feasible and workable, has a dis-
advantage in that a matrix must be transformed into its
diagonal form. To eliminate this problem Section 3.2
offers another slightly different method for finding second
order models. This latter method is used in Section 3.3 to

find the second order models for five third order systems.,

The results of these examples show that the second order

model and the phase margin model give almost equivalent
models and Section 3.4 attempts to show how the phase
margin model and the second order model are related.
Because the second order model gives only fair
approximations in some casesy, a third order model is found
in Chapter 4. This model is developed in Section 4.1 along
the lines suggested in Chapter 2 and is used in Section 4.2
to model two fourth order systems. The third order model

is seen from these two examples to closely approximate the




"

actual system and to gi&e much better results than either
the second order model or the phase margin model. Through-
out Chapters 2 through 4 it is assumed that the systems
treated contain no zeros.

Section 5.2 of Chapter 5 suggests possible schemes
to handle systems with zeros as well as suggesting other
areas for further research., Section 5.1 is a brief summary

of the modeling method and its results.
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CHAPTER 2
THE GENERAL MODELING TECHNIQUE

In this chaptery, an intuitive basis for the
modeling technique is first offered and then the general
procedure for finding a kth order model of an nth order
system (k<n) is developed.

An nth order unforced system is completely speci-
fied by its characteristic equation if its open loop

transfer function G(s) has the following form:

R

0

+ Ul

| G(s) ay

G(s) =
s(sn—l+ansn—2+ e s« o ta.s+a.)

The characteristic equation of this system is

n n-1
dx d ;.c+...+a2-g—}£-+alx=0
at™ Bare L i
n=-1
Defining x = x gx = X o o 2————-= X the differen-
~ g 1? dt 29 ° -1 n?

dt
tial equation can be rewritten as

%)

X, =

i}
%




P
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He
i

3% %

o
x = x
n-=1 n

X = =a,X, = a

n 1*1 2x-...-ax

2 n n

In vector matrix form the phase variables take the form

— o — —

xl 0 1 O « ¢ & 0 xl
X, 0 0 1 0] Xy

?_C.- = . = . . - . = éi(_ (2-2)
xn ~a1 -a2 . . ] "'an xn

Thus the unforced system is completely defined by i = Ax
when the system is in the form of Eq. (2-1). When the

system has a different form, then the system matrix A does

s
INIOT UNLQUELY UESLELmLIne viiv wyool. ITn +hie naca. a difa
ferent set of variables other than phase variables must be
used to describe the system.

The Liapunov function for an nth order system is

defined as

2 2 2 T

11

where x is the state vector and P is a symmetric matrix.




If the system is linear and autonomous and described by

X = Ax, then

dv d T T T e
3t = gt (X Px) = X'Px + x'PX
= x'A'Px + x'PAx = x'(A"P + PA)x = -x"ax

and V(t) = -5?35 where Q is a symmetric matrix. The
elements of P can be found when A and Q are given. At a
particular instant of time, V(t) is equal to some numerical
value (say V(t) = K) which is determined from the x!s

(i = l’ 2" o e e n) by V(tl) = £TP = K. The Value Of _JE

which gives V(tl) = K is far from unique, in fact, upon
plotting 5?25 = K in the state space (xl, Xoy ¢ o« X as
coordinates), a surface is obtained, any point of which
gives an admissable value of xe Fig. 2=-1 shows this
surface (curve) when n = 2, For a positive definite or
semi definite Q wmatrix chosen feor v

; the surface must obey

T

certain requirementse. 1I TNE ByStem is wus vavac —mIn *tho
V surface is open (hyperbola for n = 2, etc.), and if the
system is stable then the V surface is closed (ellipse for
n = 2, ellipsoid for n = 3, etc.). Historically, the
stability of a control system was determined by whether the
Liapunov V curve was an open or closed curve (surface for

\
n = 3, hypersurface for n>3).

But, no indication of relative stability of the

system was obtained by regarding the closedness (openness)
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FIG. 2-1

V SURFACE (CURVE) FOR A
SECOND ORDER SYSTEM
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10
of the V surface. Sucﬁ an indication can be obtained,
however, by considering the shape of the V surface. It is
intuitive that if two systems have nearly identical
responses, then their V surfaces must have very nearly the
same shape and orientation for the same V. Furthermore, if
the V surface of two control systems have exactly the same
shape and orientation for the same Q, then they must be
identical systems; since there is term wise equivalence
between the two expressions for V, the P matrices must be
the same and since P is unique for a given A, then the two
A matrices must be identical. Thus a measure of the
relative stability ot a system can be cbtained by comparing
its V surface with the V surface of a system (model) whose
relative stability (response to a step input) is known. If
the two curves are closely matched, then the two systems
can be said to have the same behavior.

It is obvious that the model should be of lower
order than the given system, since the best model of the
same order as the given system would be the system. A
model of higher order would be meaningless. In addition,
the model should be of low order (second or third) in order
to be easily analyzed.

The objective is to find a model of lower order
than the given system. Since a model of kth order has a
V surface in k space, and the nth order model has its V

surface in n space it is obviously impractical to attempt
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to match the V surfaces.since k<n. However, if two

systems have identical responses, then their V surfaces
must be matched in k space as well as in n space. Thus to
obtain a kth order model of an nth order system the
procedure is to match the V surfaces in k space. See Fig.
2-2. The kth order system, which gives the matching V
surface in k space, is called the model, and its response
hopefully gives a good approximation of the actual response.

For an nth order system the V surface in n space

for a particular V = '5?&5 is given by
T 2 2
V = i L = pllxl + 2p12xlx2 + ce0 o + pkkxk + e e o
2
* Pun®n

The intersection of this surface in k space is given by

2 : 2 _ kT k k
V = pllx1+ 2p12x1x2 + o o o+ PiXk = X Px

1
where X 1s a VeCtTOr OI TNEe 11I'SL R CLEWECILD vi ciiw =

vector and 2# is the upper left hand k by k submatrix of

the n by n P matrix. It is important not to confuse 55 and

xf. xi is the square of the ith component of the vector

k
X
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But these are Eigill

cohditions which must be met by a kth
order system with only k variables; an impossible feat. It
is possible, however, to perfectly match the shapes of the
two V surfaces (they will not have the same orientation) by
rotating the axes around until all cross products are
eliminated. The diagonal terms of the two transformed
matrices may then be set equal to determine the k parameters
of the kth order model (see Fig. 2-3). One criterion of
the "goodness" of the model is how well the orientations of
the V surfaces match. Obviously many different models can
be found by using different 6'5. If the modeling technique
is a good one, then the model and the given system should
have much the same response, and thus the V surfaces should
be closely matched for any V. Therefore, the choice of a
particular 6 should not affect the model too much. The
ultimate choicé of a v should be based on the amount of
work that must be expended to find the modei.
A step by step procedure to find a general kth orader
médel for an nth order system is then:
1) Pick one V for the two systems.
2) Determine M (V = 5?&&) for the kth order model and
T .

P (V = x Px) for the nth order system for this V.

3) Take the upper left hand k by k submatrix of P for

Pk.

4) Eliminate cross terms in EF and M by a suitable

change of variables to rotate the axes.




V CURVE OF MODEL

V m x2+2m XX+ M X2

=Ny 2 ”22%

/ SHAPES OF CURVES
TWO SPACE INTERSECTION MATCHED WHEN
OF THIRD, ORDER SUF;;ACE = i
V= P 2R P Mo T
o 2ar 2
Nt 22%
FIG. 2-3

GEOMETRICAL ILLUSTRATION OF
THE MATCHING TECHNIQUE
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5) Adjust the parameters of the kth order system to
match the diagonal elements of the transformed

matrices.

In the following chapters the second order model
(k = 2) and the third order model (k = 3) are investigated
in detail. Some examples are worked to show the applica-
tion of the technique, and the results are compared to

those obtained by phase margin techniques.



CHAPTER 3
THE SECOND ORDER MODEL

The generalized procedure for finding a kth order
model offered in Chapter 2 is now applied to the second
order case (k = 2). As seen in Section 3.1, a certain dis-
advantage (rotation of axes) results using this procedure
and thus an alternate method is given in Section 3.2.
Several examples are given in Section 3.3 to illustrate the
method and to show how well it approximates the actual
system. This second order model is also compared with the
phase margin model and it is very satisfying to note that
the two are approximately the same for all cases investi-

gated.

3.1 The Second Order Model--Method I

To obtain a suitable second order model for a
system, first a V must be chosen for both the model and the
given system. Since the V should be applicable to both the
model and the system, it should depend only on variables
which are defined for both systems (x1 and X, for a second
order model). Thus in general V = qllxi + 2q) XX, * qzzxz.
The V curve (ellipse) for the second order model then

becomes V = §?§5‘where

17
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L
i

=
[

1 My
Xo s )
H.

is obtained from the matrix equation A

=

+ MA = -Q, where

A is the system matrix of the second order model, and

[ .
931 2
_Q_ =
42 932
L. .
The V curve for the given nth order system is v = 5?25
where
xl pll p].2 . . . pln ,
X2 P12 P22 .
_x_ = . 2 = . .
AnJ Lrln -t n::J

P is obtained from the matrix equation é'?2.+ PA = -Q',

where A' is the system matrix of the given system, and

— -
qll q12 0 . 3 3 O

q12 q22 0 s o e 0

o 0 .

Q' = . (] .
L 0 O ° L) . O
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Notice that the double use of xl and x2 for both

the system and the model specifies that the first two
variables of the system and the two variables of the model
must be the same; i.e., they must have identical meaning
for the system and the model. In this instance, for

example, X, and x, are the output of the system (or model)

and x2 its first derivative.

The 2 space intersection (intersection in X1 Xy

plane--an ellipse) of the curve in n space (V' = E?Px) is

. X1 Fbll Pléw
vVt = 5?T_?£2 where 52 = ’ 22 =
) P12 P22
- b -

To match the curves V' and V, set the expressions for these

two eurves equal and equate like terms.

™

"
*g

M2 P12

Moo = Poo

The elements of 22 are fixed by the given system and 6, and
the two parameters of the model must be adjustedﬁso that

the elements of M match the elements of 22. But it is
impossible to satisfy three equations with only two variable
parameters. Therefore, the curves V' and V cannot be

exactly matched. It is possible however to match the



20
shapes of the two curvés while ignoring the orientations of
the two ellipses. This is accomplished by matching the
ma jor and minor axes of the ellipses.

Under a suitable change of variables, it is pos-
sible to rotate the coordinate axes and eliminate cross

terms. For V = §?§5 then, it is possible to find some

transformation x = Bz such that V = E?E?MBz, where N = E?!Q

is a diagonal matrix.

|2
H]

The major and minor axes are given by 2 VV7n22 and 2-VV7nlf

(see Fig. 2-3). Similarly for V' = x2T£? 2

X X
. 2 T.T_2 T
transformation x = Ex such that V! = Y C B.EI =y EI where

there exists a

R = E?Bzg is a diagonal matrix.

11

J

0 r22

To insure that the final ellipses have the same size, set
V! = V (this does not affect the shape of the ellipses).
Then the major and minor axes are given by 2-VV7FI; and
2-VV7F;;. To match the shapes of the two curves, set the

major and minor axes of the two ellipses equal or,
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2‘VV7nlf

]

2/V7r,,

2'VV7n22'= 2‘Vv7r '

22
The necessary condition to match the axes is that n,; =Ty,
and N,, = ry, Or N = R. It is now imperative to determine

exactly how this rotation of axes is to be accomplished.

For the quadratic form E?ﬁ&'

find the change of coordinates u.= Bv,

b1y byo
§=

by boo

L -

such that uTSu = vTBTSBy = !Tiz_where T = §?§§ is . a

diagonal matrix.

The requirement on this coordinate transformation is that
it be orthogonal (distance preserving); therefore the

transformation change must be a rotation of the coordinate
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axes. From Fig. 3-1 it is seen that B must be of the form

cos®e sin®

|
i

-sin® cos®e

and the next step is to find 8 and the elements of T.

cos® sin@ s

117 S

12 c0osS@® ~sin@

.’?-:ETS =

-sin® cose 512 522 sin®@ cose

2 . . 2
(sllcosﬁe + 2s,,c0s0 sin® + s,,8in Q)

(cos® sine@ (szz-sll) + slz(coszg - sinzg))

I3
"

(cos® sin® (s_..-s..) +

2 . 2
227517 (cos“9 - sin“9)

512

(sllsinzg - 2s;,c080 sin@ + szzcosze))

Therefore,

t.. s_-cosze + 2s.,.c080 sine + snnsinzg

4L A A o - (3-1)
t

22 sllsinze - 2s12cosO sine + 52200529

also,

- — . 2 . 2
t,, = 0 = cos® sin@ (522 Sll) + slz(cos 0 - s;n Q)

S, . =8
( 112 22)2cos@ sin® = s

2 . 2
12(cos 0 - sin“e)

S..-8
11 22 .
( > )sin20 = slzcos29




U= py
Uy = b,|1v1 + b12v2 = cosev1+ sinev2

u2= b21v1+ b22v2 =-sin6v1 ~*cosev2

cosO sinB 4 T cos© -sind
B = » B =B =

-sin® cosO sin@ cosO

FIG. 3-1
ROTATION OF THE COORDINATE AXES




24

. ' 2s
sin20 = tan20 = . EZ
cos20 117 %22
as
or @ = 1/2 tan-l(;——%g-—) (3=-2)
11 22

With these formulas it is possible to transform 22 into its
diagonal form R since all elements of 22 are constants and
the angle of rotation © can be obtained immediately.
However, the elements of M are not constants, but functions
of the variable parameters of the model, and the angle of
rotation is not réadily available. For example, consider

y- for qll =1,

|©
]

) 0

=

is obtained from the matrix equation ATE + MA = -Q where

A is the system matrix of the model.

(0) 1

|>
It

From part 1 of Appendix Ay M turns out to be

.

[ 2
(a1+a2) a,
1
Mz—-—-——_
- 2ala2
a2 1
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To transform M into its diagonal form N, Egqs. (3-1) and
(3-2) are used. The elements of N then become:

(a +a2)

2a
nll = _E%_EE- cosze + > cos® sin@ +-§;L;— sinze
122 122 2122
nyjp =0
2
(a,+a?) 2a
n22 = zi a2 sin29 - 33 2 cos® sin@e + 2ala conze
172 172 172
where
2a
e = 1/2 tan"l ( 2 )
a,+a_.-1
1 2

Thus © is given in terms of the parameters of the model
and since these parameters are unknown, © is not known.

Therefore, the procedure of matching n

11 = 11 and
N, = Xy, must be one of trial and error; unless, of course,

M is already in diagonal form and no transtormation is

needed. Such is the case when V = -xg (a,, = dy5 = O,
,_;22 - 1) Phrr t+thic \'r; 'h_d hanomes
r—a -
1
2a 0
2
gd_ =
° =
h— 2—

where a, and a, are the variable parameters of the system

matrix é.
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A =
e )
Therefore, a1/2a2 =r, and 1/2a2 =Ty,
or a, = 1/2r22
a) = Ty/Tpp (3-3)

The procedure for finding the second order model
for an nth order system is summarized in the following
steps:
. o 2 T
1. Pick V = -x; =-xQx (q,, = 1) and solve for P, an
n by n matrix, from the matrix equation éfT£.+ PA' =
-Q where A' is the nth order system matrix.
2. Take the upper left hand 2 by 2 submatrix of P for

Pz.

3. Rotate the coordinate axes of the state space using
Egs. (3-1) and (3-2) to find the diagonal form R.

[~ ]

=
]

L 22 ]

b, Adjust a; and a, (parameters of the second order

model) to satisfy relation (3-3» The model is now

completely specified by A.
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A convenient measure of the quality of the model ,
i.e., how well it approximates the given system, is given
by the angle of rotation . This angle shows how closely
the orientations of the two ellipses match. When © is
small (6 <10°, for example) the model is a good approxima-
tion to the given system. As © increases the model
becomes progressively worse. The disadvantage of this
method is that the 22 matrix must be transformed into its
diagonal form. While this operation can be readily per-
formed it is desirable to find a method which is more

applicable to digital programming.

3+2 The Second Order Model--Method II

If the model obtained in the previous manner is a
good one, then for any v (not just G = —xg) the V curve of
fﬁis model shouid closely match the V curve intersection of
the nth order system. It is conceivable that a slightly
better model could be obtained by matching the curves for a
different G. Another way to find a model would be a method
which attempts to match the curves for more than one V;
i.e., using some criteria, this method would attempt to
match V curves for two different choices of V (say V, = =x

1
and ﬁz = -xg). Such a method would attempt to give a

1
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compromise between the model obtained for ‘.'1 = -xf and the
model for 62 = —xg (or any other choices for V). Hopefully
such a model would give a better approximation than the
other two. One such method uses, as its criteria, the
matching of the products of the major and minor axes of the
two ellipses obtained for two different choices of Go From
Fige. 2=3 notice that the major and minor axes of the V

curve are given by 2-VV7rll'and 21/V7r2£ (or 21/V7nll'and

21/V7n2£ for the V curve of the model). The product of

1/2 .
llr22) - But, r,;r,, is

the value of the determinant IB! and therefore, Prod. =

these two axes is Prod. = 4V/(r

4V/|5]1/2. This E was obtained by an orthogonal trans-

formation of the coordinate axes X = Ez; giving V as

V = §T£2§ = ngnggx = ITBI
where R = E?E?E
_ o~ T " ."T‘..'.. 9. . T l'_2l
and R = le'P%cl = ICIRTIE = ichidiet = i Q2]

But since the transformation is orthogonal, then Efl =

S? or g?g = I. Therefore, |R|= l;}lgﬁ = |£% and Prod. =
4V/|£2'1/2. Similarly for the model the product of the
major and minor axes is Prod. = 4V/|§|1/2e

2
m

2 2
set  [M| = |B%| (mm,, - mf, = pyypy, = pP,) (3-4)

The axes product is now matched for a particular V. Since

the model has two variable parameters, it is possible to




29

satisfy two such conditions as Eq. (3-4) for two different

choices of V. Two convenient V's are Gl = -xf (q11 = 1)
y 2 . R
and V2 = =X, (q22 = 1). For Vl = —xi Bl is obtained from

T
Al 21 + 215' = '31’ where A' is the nth order system

matrix, and 31 has ;7 = 1. The second order model has

2
ay) * a, 1
2ala2 2al
ﬁl =
1 1
2al 2a1a2
. b p—
and M = 1/(4a 512)
-1 172

where ay and a, are the variable parameters of the system
matrix A. Setting |M]| = I_lfl (gf is the upper left hand

2 by 2 submatrix of P.)

2 2
1/%a,a; = |By] (3-5)
V. = ox® = ; ; W =
For Y = X, (q22 = 1) P, 1is obtained from A P, + P,A!

-Q, where A' is the nth order system matrix and Q. has
=2 - —2

Apo = 1. The second order model has

ay T
2a 0
2
M, =
1
0 2a2
L -
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Egl (Bg is the upper left hand 2 by 2

Setting IM |

‘'submatrix of 22)

a,/hay = P3| (3-6)

Egs. (3-5) and (3~6) can be solved simultaneously for a; and

ag

2 1/2
L= (B3| /19)Y

o}
L]

2| [p2
a 1/(16|p7| [Bg] )

2

The major and minor axes products aré now matched

for V1 = —xf and 02 = —xgo The step by step procedure to

find the second order model using this method is as

follows:
. 2 .
1. Pick V, = -x] and find P, (V) = _;5 1X)
. . P .
2. Pick 5 = "X, and find 22 (Vz‘- 5 _1_3_2_25)
3« Take the upper left hand 2 by 2 submatrix of P, and

B e

.I.‘—vyvv b S R

4, Find |£§| and |£2| and use Eqs. (3-7) to find a

1
and ase The model is now completely specified by
A.

o 1
é:
! ~2

This model may or may not be better than the one

obtained by matching the curves for one V. The one
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advantage it has over fhe other method is that no rotation
of the axes is required; it is simply necessary to find
gf and gg. For this reason the latter method is more
readily programmed on a digital computer (it is easy to
find a single subroutine to give Igil and |£§|). A dis-
advantage of this method is that there exists no basis for
determining how good the model is except by actual com=-
parison. In the previous method the angle of rotation €

gave this information. Because of its ease of application

the last method is used in the examples to follow.

3.3 Examples of the Second Order Model

In this section, five third order systems are
modeled with the second order model and the phase margin
model. The first example is worked out in detail to
illustrate the procedure; the results of the other four
examples are given to show how the models compare with the

o~

given systems. rosr sysicms I Irdzr gre=tar than three.
the procedure is exactly the same, and in a later section
two fourth order systems are modeled with second order
models. To aid in the hand calculations, an appendix is
added at the end of this paper giving tables for finding
- the P matrices for systems up to fourth order.3 To model
higher order systems a computer is recommended. The five

examples in this section were chosen as representatives of

the five different types of third order systems of interest:
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1. Two complex coﬁjugate poles and one real negative
pole far out on the axis (see root locus plot,
Fig. 3-2).

2. Two complex conjugate poles and one real negative
pole closer to the imaginary axis (Fig. 3-3).

3. Two complex conjugate poles and one real negative
pole close to the imaginary axis (Fig. 3-4).

4, One real negative pole close to the imaginary axis
and two complex conjugate poles farther from the
imaginary axis (Fig. 3-5).

5. Three real negative closed loop poles (Fig. 3-6).

The results of all five examples are given in
Tables 3-1 to 3-5, and the transient responses of the given
system and the second order model to an initial condition

of xl(O) = 1 are shown in Figs. 3-7 to 3-11.

Examnle 3—177(Findingfthe model for a third order system)

Given the third order system G(s), find the second
order model and the phase margin model, and compare the
transient responses of each to the transient response of

the system for xl(O) = 1.
R=0

X4(s)

: G(S) -

~ S(s+a)(s+b) s{s+1){(s+10)

First find the differential equation describing the system

from the block diagram.
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ROOT LOCUS PLOTS OF THE FIVE »
TYPES OF THIRD ORDER SYSTEMS

X = open loop poles of the system

R = closed loop poles of the system

§
— R

FIG. 3-2

CASE 1
'\
I

Phe—¢
FIG. 3-3

CASE 2
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e
FIG 3-4

CASE 3 A

FIG 3-5

CASE 4
A

FIG. 3-6
CASE 5
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_ _ 10
:rl-(-s—)-—ﬁ(s)— 3

s +llsz+10s

X + 11X + 10x = -10x

X, = x
defining, x, = il = x
Xq = X, = b3

the differential equation can be written as:

-10xl - 10x, - 1llx

*3 = 2 3
iz = X4
il = X,
i;n PO 1 0 ] x1“
or X = ie = 0] 0 1 X, = A'x
i%_ _;10 -10 -IlJ X3

C A P N S
4 -

The system transient respousc, Al(u

xz(o) = x3(0) = 0 is:

-10.11t .4h45t

xl(t) = 1/92 e + 91/92 e cos.89t

+ .618 e-.445t sin.89t

35

Now find the second order model and its transient
response for xl(O) = 1. (Refer to the procedure at the end

of Section 3.2,)
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Pick V = -x5 = -x'Qx, then for the third order
system
1 o o
Q = 0 0 0
0 0 0

Using part 2 of the appendix and the system matrix

A' for A (a1 = 10, a, = 10, aj = 11) then,
2210 1210 100
1
P = 35055 1210 1340 121
100 121 11
. ° T
Pick V = =x_ = -X Qx4 then
0 0 0
Q, = 0 1 0

Using part 2 of Appendix A,

- -
110 10 0
P o= i 10 131 11
=2 ~ 200
0] 11 1
Take the upper left hand 2 by 2 submatrix for 32,
then,
221 121 : 110 10
2 _ 1 2 _ 1
Pl = 355 » £5 = 350

121 134 10 131
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ke |PY = (1/20002((221) (134) - (121)2) = 1.5/
|£ﬁ = (1/200)2((110)(131) - (10)%) = 1.43/4

Using Eqs. (3-7) to find the parameters of the

system.

)1/2

ap = ([e3] /g )*% = w972

a, = 1716 [pf] [ )M/* = 825

The system matrix for the model is thus

e pa—

’ -0972 "0825

— -—

It is convenient to choose the model in the form of

nzl_\ - k i wh 2 .
SqisS? = S(evay YheTe GM(S) is the open loop
transfer function of the second order model.
B X, (s)
: a2(s) b

2 k Lo s
For GM(S) = STs+ay) the system matrix is

0 1

I>
u

-k -a

Therefore, k = a,y a = a, and

1
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Gﬁ(s) = 2972

s(s+.025

For a second order system of the form the

s(s+a)?

transient response for and initial condition

xl(O) = 1 can immediately be written as:
xl(t) = e—a/Ztcos -a2 + ___2[3__ e-a/Zt‘
-a2
sin -a2
For k = .972 and a = .825
xl(t) = e-°413tcos.896t + o461e-'413tsin.896t

Now find the equivalent phase margin model (see
Appendix B). The phase margin model is simply the second
order system with the same phase margin and crossover
frequency as the given system. Thereirore, the procedue
will be to find the phase margin and érossover frequency
(froquancy at which |Gl = 1) of the given system, and
then adjust the parameters of the second order system to

give these same values.

_ 10
Jw(jw+1) ( jw+10)

the phase margin and frequency when IG(jw)l = 1 are

The given system is G( jw) and
W= .785 and P.M. = n/2-tan-l.919.
Now find the second order system of the form

EBTEE:;T which crosses over atiu = .785 and at an angle of

0 = -n/z-tan"l.919



k R k

4(-n/2-tan-1“7a)

= lé(-n/z—tan-1.9l9)

tan W/a = tan"t.919

w 785 _
2919 = 919 = 8%

a =

k

= 1
.785(.735».,616)1/2

k=o9l

therefore,

_ .91
Ge(s) =~ S(s+.85%)

The transient response to xi(O)

xl(t) = e-°427t

(aZHHZ)l/Z

CcOoS ¢854t + oSOe

= 1 is

- B27t ;. 854t

39
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TABLE 3-1

RESULTS OF EXAMPLE 3-1

System System Response xl(t)
Given 10 ~10.11t - 4h45¢
System S(SFI)(571I0) 1/92e + 91/92e cos.89§
+ 6186~ 5t i1 8ot
Second
Order 72 e-'413tcos.896t + .4616-'413tsin.896t
M S(s+.825) .
odel
Phase 91 -.427¢ - b27t
Margin m e ° cos.854t + .50e sin.854t
Model ‘ °
TABLE 3-2
RESULTS OF EXAMPLE 3-2
System System Response xl(t)
Given 10 1I.n.~-3'89t « A=y n-.055t 1 6
System s{s+1)(s+3) T g cost.ot
+ .381e-°055tsin1.6t
Second
Order ;(2-%2—1)- e-.061t008106t + -03819-.0611;511'11-61:
Model S*e
Phase
: 2.5 -.063t -.063t _
Margin FICT IS Vi) e cosl.58t + .039e sinl.58t

Model
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TABLE 3-3

RESULTS OF EXAMPLE 3-3

System System Response xl(t)
Given 1 17861070t | gop =12t pepy
System 2
s(s+1) -.12t
+ .625e" ° sin.656t
Second
Order =221 5 e 125t 05,736t + .170e" 125550 . 736¢
Model *
Phase
Margin §T§é2§E§T e-°135tcos.689t + °196e.'135tsin.689t
Model ¢
TABLE 3-4
RESULTS OF EXAMPLE 3-4
Syétem System Response xl(t)
i xran 5 5 -t . _ =2t . . - =2t . N
Qe D€ - Le)v VUDL —Tew D sesa
System s(52+55+9)
Second
Order ‘r-i%lésgf e 793t 05,433t + 1.8367° 793 5in.433¢
Model  °'STie
Phase
) «937 -.867t -.867¢t .
Margin m%ﬁ)— e cos.429t + 2.,02e sin.429t

Model
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TABLE 3-5

RESULTS OF EXAMPLE 3-5

System System Response xl(t)
Given 3 -7t -t -4.3¢t
System s(s+2)(s+&J ' 3.9%e 3:00e " + .06e
Second
Order =22 e-'62tcos.308t + 2.01e-'62tsin.308t
s{s+l.2
Model
Phase
. 0502 --66t "o66t .
Margln m e 00502761: + 2.388 s:.n.276t

Model
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Upon studying fhe results in the tables it is
immediately apparent that the phase margin and second order
models are very similar for each example. This amazing
fact makes the V surface modeling approach a very satis-
factory one. Further insight into this similarity is
given in Section 3.4. Since the models give nearly the
same response, only the response of the second order model
is compared to the response of the given system in Figs.
3-7 to 3-1ll.

Cases 1, 2, and 3 (Figs. 3-7, 3-8, 3-9) really
belong iﬁ one main category. They are all underdamped
third order systems whose real closed loop pole is further
from the imaginary axis thaﬁ the complex conjugate poles.
See the root locus plots in Figs. 3-2, 3-3, 3-4. The
only major difference between the three cases is the
importance (relative distance from the imaginary axis) of
this real pole. In Case 1 the pole is so far out from
the imaginary axis that it has very little influence on
the sysfem behavior. Therefore, it seems likely that the
closed loop poles of the model should closely coingcide
with the complex conjugate poles of the system. Such is
the case and as expected the models give excellent approxi-
mations for this example. But as the pole moves in toward
the imaginary axis it asserts greater influence on the
system behavior and it is not so obvious where the closed

loop poles of the model should be. Actually the closed
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loop poles of the modei move only slightly away from the
system's complex conjugate poles as the real pole moves in
toward the imaginary axis and because of the mounting
influence of this real pole the models steadily decrease in
accuracy as the pole achieves dominance (Figs. 3-8, 3-9).
Upon looking at Figs. 3~7 to 3-9 it is seen that while the
second order model has a similar frequency and damping |
factor, it becomes more and more out of phase with the
actual system’s response as the real pole achieves more
dominance., This bhase difference results in the model
having avgreater overshoot and a faster rise time than the
third order system. It might be possible that this could
be related to the angle of rotation © discussed previously.

In Case 4 (Example 3-4) the previous situation is
reversed. Now the real pole is closer to the imaginary
axis than the complex con jugate poles and therefore the
real pole is the dominating pole. Looking at the root
locus plot of this Case (Fig. 3=5) it is not at all
obvious‘what form the closed loop poles of the model will
take. Interestingly, the model is a slightly underdamped
system. Upon inspection of Table 3~4 the second order
and phase margin models do not seem to match the third
order system at all, but upon plotting the responses in
Figo 3-9 it is seen that the second order model is a very

good approximation to the given systemo
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Case 5 is concérned with third order systems with
all real closed loop poles. Inspecting the root locus
plot for this Case (Fig. 3-6) it seems that the closed
loop poles of the model should be real and closely coincide
with the dominant real closed loop poles of the system.
It is surprising however that this is not the case at all.
Both the second order and phase margin models give nearly

the same underdamped system. Upon plotting the responses

of the second order model and the given system in Fig. 3=11
it appears that this slightly underdamped system is a very
good apﬁroximation to the actual system after all=--an
amazing result.

It should be apparént from these examples (espe=-
cially Examples 3-1, 3-2, 3-3) that the accuracy of the
model is greatly dependent on the relative positions of the
closed loop poles of the given system. In systems of order
greater than three the accuracy of the model is even more
dependent on the location of all of the closed loop poles.
An obvious way to increase the accuracy of the model to
meet the demands of higher order systems is to give the
model more closed loop poles by increasing the order of the
model and, therefore, a third order model is developed in
Chapter 4. Before proceeding with the third order model,
however, it may be interesting to see why the second order

model and the phase margin model are so similar.
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3.4 Finding Phase Margin by Matching V Curves

The phase margin model was found by matching its
Phase margin to that of the given system (also its cross-
over frequency). Interestingly enough, it turns outlthat
one of the conditions determining the second order model
(the model obtained by matching the axes products of the
ellipses) fixes the phase margin of the model; Iggl =
al/4a§ uniquely determines the phase margin of the model
and nothing else. This is true because for any second order

a
system of the form ;T;%;—T the phase margin is given by
2

a; = Cag‘where C = cot¢'VI + cot2¢ and @ is the phase
margin.,

23

Proof: Gﬁ(jw) = ol qovar

a
at crossover Gﬁ(juﬂ = EBTE%:;T = léx-n + 14d)

(# is the phase margin)

a.

= L(=T/2 - tan lW/a ) = Ldi-n + )
(wz+a§)1/z 2
-n/2 - tan"lw/a2 = =T + ¢
—1w
tan /a2 = N/2 - ¢

a, = tan(n/2 - @) = cotd

W = a200t¢
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al + 8.2

2 2 2"
1 azcot¢‘Ja2cot g + a,

)
it

Qo
i

—
agcotﬂ-Jl + cot2¢

2 2 0
or a, = Ca2 where C = cot@ 1 + cot“¢g

2, 2  cotdVl + cot3g
o/hay = K'Y

2 2
Therefore, |£2| = a1/4a2 = Ca
and Igglcompletely specifies the phase margin of the -
model. Since the phase margin model and the second order

model are similar it follows that Igzlmust give a good

indication of the phase margin of the nth order system.

Example £2;6) Referring to Example 3-1 in Section 3.3 note

that the actual phase margin of the given system is

g =T+ 0 = n/g-tan'1.919

¢ = 47040

Now using Iggl to find the phase margin of the second order

model (Example 3=-1)

cotd 1/1 + cot®@ = 4P3 = 412 = 143

cot?g(1 + cot3g) = 2,05

cot?g = 1.007



cotd = 1.003
¢ = 45-10
45,1° is quite close to 47.4° and thus Iggl does seem to

give an accurate indication of the phase margin of the

given system.
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CHAPTER &

THE THIRD ORDER MODEL

4.1 Development of the Model

As seen from the results of Chapter 3, the second
order model and the phase margin model give much the same
results. In fact, it appears that the second order model
is approximately equivalent to the phase margin model.
While the models are good approximations for many systems,
in some cases more accuracy (a better model) may be
desired. Obviously, a better model would be a third order
modely and although it would be harder to analyze than a
second order model, it should certainly give better
results. Third order models find little use in modeling
third order systcms since the best third order model is the
given third oraer sysiecm iLioclf (ooocamA nrde} models must
suffice). But, third order models are practical for higher
order systems where second order models may not give
accurate results. Models of order higher than three are
questionable, since then the analysis of the modgl would
become too difficult for the possible gain in accuracy.

It is tempting to extend the latter method for
finding second order models (fhe method of matching the

products of the major axes) to third order models. The

54
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V surface (ellipsoid) of the third order model is given as

V = 5?&& where,

- .
*1 My M 13
x= X5 ;3 M= mo My,  Myg
m m
*3 13 23 33
- — -
The V curve of the nth order system is given by V = 5?2_
where,
*1 Py; Pyo P33 * ¢ * Pyp
) Pyo Paa Poj .
X3 P13 Paz P33 :
5 = ° H _P_ = . ™
*n Pin s e e Pnn
p— . -

The V curve intersection of the ntn ordw: syotiz (intaera
section of the nth order V curve in three space=~-
ellipsoid) is given by V = §?T2?53 whére 53 is a vector

of the first three components of x and 2? is the upper left

hand 3 by 3 submatrix of P.

- - n
Xy | P11 Piz2 Pi2

3 S
= x,0 3 P Pyj5 Pgy Pog
*3 P13 P23 P33
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To match the axes products for a particular 6, it

is necessary and sufficient, by extending the reasoning in

Section 3.2 to third order, that |§| = IBBI. To completely

specify the model it is necessary to satisfy three such

relationships for three different choices of V.

[ ] L]
a convenient choice for these V!s is V

and V

where A is the system matrix of the third order model.

| >

Then,

in general by higher order systems.

0

O

= —x2
3 3°
obtained from part 2 of Appendix A or from é?ﬁi

Il

The expressions for M. (i = 1,243) can

-

1 0

o T

~ay -ay

0 0~

1 0|, 8

9] 04
l/;l

8(aya,-a;)”
21

8(aya,-a, )’
3

8(aya,-a,)’

e

1

0

0]

0

o)

O

As before,

2 ¢ 2
1 = "Xy Vo = <Xy

be

= -‘gl

Or, gﬂ 'MBI = E2|25 but this condition is not met

It is, therefore,

impossible to match the axes products of the curves for
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*

these three choices of V. Another G must be chosen so that
no conflicting requirement results. At present this choice
is not apparent and therefore the first method is used for
third order models (matching V curves for a particular V).
The process for matching V surfaces in three space
(ellipsoids) is exactly the same as for two space. Again,

it is impossible to match the two V surfaces term by term,

2
P11*1
+ 2p, X, X, t+ 2p,,X,Xx, + P xz + 2p,.,X,X, + P x2

127172 137173 2272 237273 3373

three variable parameters. Therefore, the coordinate axes

since there are six such terms to match (V = +

) with only

must be rotated for both V surfaces, to eliminate the cross
terms leaving only diagonal elements. The diagonal terms
of the two transformed matrices may then be set equal to
determine the three parameters of the third order model.
This rotation is even harder to accomplish in the third
order case than the second order case, because there are

N

nun Lz croee terms to eliminate instead of only one.

Also, the elements of the M matrix (V = ETM is the V curve

of the third order model) are not constants but functions
of the three variable system parameters andy therefore, the
matching of diagonal terms must be a procedure of trial and
error--not a very satisfactory result. An attempt is thus

made as in the second order case to find a ﬁ that immedi-

ately gives M in diagonal form.
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gives M in diagonal form.

V =

58

x'M

-_)ngi, try to find Q so that V =

Q and M are related by the

matrix equation é?g + MA = -Q where A is the system matrix.
o — T o —
97 913 93 S S F e & o 1 0

Q = 9o 952 923 |» s S| mpp mon o3| A =]0 o 1
q q q 1 N -a, =-a_, =-a
|13 "23 "33 [ M3 T3 M3 |1 "2 73]

Equating the elements of the matrices (é?ﬁ + Eé) and -Q,

the following

six equations result.

i. -2a1m13 = =qy,
2. —alm23 tomygy - a2m13 = =90
3. -a,mgq +om i, - asmyq = =d)4
e 2(my, - a2m23) = =dyo
5. m13 - azm33 + m,, -~ a3m23 = q23
6. 2(my 5 = a3m33) = ~4j4
Sdlving these simultaneous equations for the elements of

ﬁ in terms of

elements of

m

13

I

12

M

the "q's" and the "a's,'" the off diagonal

turn out to be:

93

2al

a 2 + a2 + a2a 2a.a,a
22391 1922 122933 12223% 3

2a1(a3a2 - al)
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al + 2 -2
839, T 3184055 + 91954 212393
23 2al(a3a2 - al)

m

The only way to make m13 zero, is to set 47 = 0. To force

m, 5 and m23 to be zero, it is necessary to satisfy

1. a azq + azq + aza q = 2a.a,a,q
273711 1722 172733 17273713

2 2 + + 2 = 2
+ @3Q;y * 2133055 * 23033 T 2338393

Je 2al(a3a2 - al):>()

4, Q positive semi definite or positive definite

If it is possible to satisfy these conditions, q13, U5o9

must be functions of ajy agy age. In other words, Q is

433

‘a function of the parameters of the model--an unfortunate
result since these parameters are unknown. Therefore, the

.
. - ~ . T
procedure of matching the V surfaces for this V = =x Qx

S R

must again be a process of trial and error Wil vue pIllim

inary step being a guess of V or Q. It is apparent that Q

must have elements which are known constants and not

functions of a a a

l’ 29 3'

never be made zero. m13 can be made zero however by

With such a Q, my 5 and m 4 can

setting Ay = 0. Two such Q's are
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0 0 0] 0 0 0
Q = o 1 o , Q,=|0 0 o0
0 0 0 0 0 1
. 2 . 2
or V = ---x2 and V = -x3.

The resulting M must still be transformed to its
diagonal form. Rather than doing this an approximation
scheme is used to match the two V surfaces: choose ﬁ so as
to eliminate as many cross terms as possible; transform the

23 3T,3.3

matrix (V = x x” is the V surface intersection in

three space of the nth order system) to eliminate the same
cross-terms that are missing in the M matrix (in a sense,
these cross terms have now been matched); force the
diagonal elements of M and the transformed 23 matrix to be
equal ignoring the remaining cross terms. This approxima-
tion is shown to be good or bad by regarding the remaining
cross terms nuw that the diagonals are matched. If the
cross terms are sSimilar iim vwriil *he annroximation is a
good one. If the cross terms are not at all similar then
the approximation is not good. At the very least this
approximation procedure gives a starting place for the.
trial and error process of matching the shapes of the V
surfaces exactly. Usually, however, if the resulting
third order model is to be any good at all, the V surfaces

E?ﬂg and,§3T£?§3 should be closely oriented to begin with,

and therefore the cross terms should closely match when
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diagonal terms are made equal. Conversely, if the V
surfaces are not oriented in the same direction when their

shapes are exactly matched, then the model will not be a

3

good representation of the system anyway and P” and M will

not be similar. In other words, the approximation will be
bad but the exact model would have been bad anyway. Thus
the approximation process is used to find the third order
model., As stated before, the choices of V which eliminate

the most cross terms of E are ﬁ = -x2 and V = -x§. Both

2
choices for V result in the x.x, term being zero. It is

173
necessary, therefore, to transform §3T£3§?

to eliminate the

xlx3 term. Recalling the procedure for eliminating cross

terms in Section 3.1, a suitable change of variables is:

vy = cost1 + 51n9x3
Ya = %2
Yq = -sianl + cosz3
cos@ 0 sinéw
ory y = 253, B = o 1 Y]
~sin® 0 cos®
cos®e 0 -sin®@
B! - BT - 0 1 0
sin@ o) cos®
3 T
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and v = x>'P2x? = y'BPoB'y = y'Ry

plBW cos® O -siné}

cos® O sin® Py; Pyo
R = 0] 1 0 P15 Pgs Poag 0] 1l 0
-sin® O cos®@ in®e O cose
i 4 [Pa3 Pas P33 |° o

2 . . 2
(pllcos 0 + 2p13c05951n9 * Pggsin Q)
R = (plzcosQ + p2351n9)
(sin®cosO(p,,-p,y) + P (coszg - sin20))
33 "11 13
e
(p120059 + p2351n9)
Pao
(—p1251n9 + p23cos9)
-
(sin®cose(p,.-p.,) + P {vuoss ~in2ad)
33 11 13
(-plzslne + p230059)
(p sin%o - 2p, ,c050s8in® + p cos20)
11 13 33
But r13 must be zero, therefore,
r = sin@cos8(p,,~p;4,) *+ P (cos29 - sin29) =0
13 337P11 13
- in20 = 20
1/2(pll p33)51n e Py 4c0s
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2p
tan2e = —e3—

P117P33

2p
e = 1/2tan'1(———%2——) (&-1)
P117P33

The other terms of the E matrix are:

cosze + 2p13cosesin9 + p33sin29

i1 ¥ P11
rig = plzcosg + p23s1n9
roo = Poy (4-2)
r23 =-plzs1n9 + p230059
r sin29 - 2 cosOsing + cosze
33 © Pua P13 P33

Using Eqs. (4-1) and (4-2) it is possible to transform the

33 matrix to R to eliminate the P13 term. Since V o= -xg

132z 2= M matrix with simpler expressions for the diagonal

he N B ——
J bt —

terms than does V = -x?, V = —xg is used as a basis to find

the model. From the tables in part 2 of Appendix A for

V = -xg, M becomes:
— 01
a3a1 a;
1 2
M = a (af+a,) a
2(a3a2-al) 1 3 2 3
0 a 1
L 3

X a3 are the variables of the model. Equating

the diagonal terms of R and M,

where ajy a
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5 0 S
2(a3a2-al) T 711
2,

33 az _
2(a3a2—ai7 Too
l —
2(a3a2-a17 - r33

Solving these three expressions for ajs a9 a3,

/ - a2

2 T F2o2/¥33

a; = r11"‘?3‘”33) (4-3)

> 4
(rpp/ragey = a5 =(1/2r5day = r), /ry,

The step by step procedure for determining the

third order model is:

1.

. o 2 T
Pick V = =-x, = =X sz and solve for P, an n by n
. . P '
matrix, from the matirix ecyuavio. L' D + PAT = Q.

where A' is the nth order system matrix (use tables
in part 3 of the appendix for fourth order system) o

Take the upper left hand 3 by 3 submatrix of P for
p3

.

Rotate the coordinate axes of the state space to

eliminate the p13 term.

Solve for a;, ayy a4 (parameters of the third order
model) from the Eqs. (4=3). The model is now

completely specified by,
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(0] 1 0 7
A= 0 0 1
-ay —a, —-a3

Obviously, the work needed to find the third order
model is much greater than that needed for the second order
model; the 23 matrix must be transformed, and then a non-
linear algebraic equation must be solved to find a3. Hope=~
fully, the result of this additional labor is a better

model .

4.2 Examples of the Third Order Model

In this section, two fourth order systems are
modeled with the third order model. The first example is
worked in detail and the results are given for the second.
This model is compared with the second order and phase

margin models in Tables 4-1 and 4-2.

Example 4-1 (Finding the third order modei iu: o Jourth

order system)

Given the fourth order system G(s) find the third
order model and compare its transient response to that of

the system for xl(O) = 1.

R =0 X (s) - 6
1 G(s) = ST 72y (3h)
G(s) =
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First find the system matrix A' from the block diagram.

~X1(s) sli + 753 + 1452 + 8s + 6

K+ X+ 14X + 8% = -6x
Defining

X = xl

x =x; = X,

[ L] - -

X =x, = x3

.:’.(. = XB = X4

then the differential equation can be written as,

ig = —6xl - 8x2 - llix3 - 7xy

Then the system matrix A' becomes

0 1 0 0
0 (0] 1 0
AV =
- 0 0 0 1
The system transient response xl(t) for xl(O) =1,

xz(O) = x3(0) = xq(O) = 0 is:

xl(t) = .Ble“:}t-.l6e-3'6t + .85e-2tcos.72t

-.2
+ 7he”"2tgin. 70t



| Now find the
response for xl(O) =
of Section 4.1).
. * 2
l. Pick V = X,

system

B n
o 0 0 O
o 1 0 O
2z = o 0 o0 o
0o 0 0 O

67
second order model and its transient

1 (refer to the procedure at the end

= '5?25’ then for the fourth order

Using part 3 of Appendix A and the system matrix

At (al = 6,

P =
—2 = 2(%26) 42 686

13

a, = 8, a, = 14, a, = 7) P_ becomes

2 3 2

B 7
540 294 ba ()

294 1610 686 ()
351 ()

L( ) )y ) « )_

Talkra the ubber left hand 3 by 3 submatrix of P, for

2
540 294 4o
294 1610 686

4o 686 351

b -

3. Eliminate the p13 term by rotation of axes using

Eqs .

(4-1) and (4-2).

R becomes,
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i B 3 i}
548 431 0 643 .505 0]
= E%E 431 1610 610 | = |.505 1.890 .716
0] 610 342 0] .716 .402J

Now solve for a;, a,, aq (variable parameters of

the model) from Eqs. (4-3).

a = 12605
1 a
3
2
a2 = 4-71 - a3
2 4 _
4.71a3 - a5 - 1.244a3 = 1.605

Solving the nonlinear equation,

ag = 1.90 643 . 340 0
a, = 1.10 , M= .30 1.890 .764
a; = . 845 0 764 ko2

Actually there are two real roots for a3, but

43 = 1. 90 givaes an M matrix whose off diagonal
elements most closely match those of gg. The third
order model becomes,
[ i
0 1 )
é: (0) 0 1
-.845 -1.10 -1.90
b —
. . 3 k
Choosing a model in the form Gy(s) = = ’
s(s“+as+b)
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then k = a, = .845
a = a = 1.90

3 9

b = a2 = 1.10

and Gﬁ(s) = 5 -845
s(s“+1.90s+1.10)
For the initial condition xl(O) =1, xl(t) becomes,
x, (t) = 2320”1054, 7686 182t o 7ot
+.68e- 182t 4, ooy

To find the second order model and the phase margin
model the procedure is exactly the same as in Example 3-1,
and therefore is not repeated hereo

From the results in Tables 4-1 and 4-2 éotice that,
as with third order systems, the phase margin and second
order models are aimus. 22 t~me far both examples; they
each give the same fair approximation. The third order
model, however, gives a very good approximation to the
given system as seen from Figs. 4-1 and 4-2, and perhaps
this is the best justification of all for the approximate
method used in matching the V surfaces. Looking at the
figures it appears that while the second order model can
give the same frequency and damping factor as the given

system, its response lags the system response. The third
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order model, however, can give the same frequency, damping
factor, and also the same phase as the system--a result of
three adjustable parameters instead of two.

This concludes the discussion of the V surface
modeling technique. The final chapter summarizes the
method and its results and suggests further areas for

further researche.
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TABLE 4-1

RESULTS OF EXAMPLE 4-1

System System Response xl(t)
Given 6 31e—3t_ 163~3.6t+ 85e“2tcos.72t
System s(s+1)(s+2)(s+k) ° ‘ y
+.74e—'2tsin.72t
Third
Order 3 -845 .232e—l°54t+0768e~'182tcos.72t
Model  s(s“+1.90s+1.10) _.182t
+.68e¢ ° sin.72t
Second
Order —TL%lgng e-°l76tcos.71t+.249e_°176tsin.71t
Model Siste.
Phase
Margin - 446 e_'198tcos.638t+.31e-'198tsin.638t

Model

s(s+.395
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TABLE 4-2

RESULTS OF EXAMPLE 4-~2

System System Response xl(t)
given 10 -307e—lo82t_0e—9.99t+.693e~0095t‘
ystem 2
s(s+1)“(s+10) -.095t

cos.738t+.533e" ° sin.738¢

Third

Order 5 .832 .2O6e_l'53t+.794e_'09tcos.733t

Model s(s“+1.71s+.82) ~.09t
+.615e ° sin.733t

Second

Order = ;2?197 e-'oggtcos.725t+.136e-°099t‘

Model sin.725t

Phase

Margin - 485 e-'108tcos.688t+.157e-°108t‘
s(s+o216$

Model sin.688¢t
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CHAPTER 5

SUMMARY AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 Summary

In this paper, the Second Method of Liapunov was
used to develop a method for obtaining a model for high
order control systems. This was accomplished by matching
the surfaces described in the state space by the Liapunov
functions of the model and the system. In particular, the
second and third order models were found for systems
without zeros and shown to be good approximations to the
given systemse.

The second order model was seen to be very similar
to the model found from phase margin techniques. The
second order model, however, was obtained directly tfrom
time domain considerations (Liapunov V curves in state
space) and may be more appealing in that sense. Also this
method of modeling is easily programmed on a digital
computer although the model can be found by hand calcula-
tion using the tables in Appéndix A for up to fourth order
systems.

Of further interest, a third order model was
obtained using these techniques which gave an even better

approximation to the given system than either the second

75
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order or the phase margin model. Higher order models are
of course possible, but their usefulness in analysis may be
limited by their own complexity.

As with any approximate analysis procedure, it is
desirable to have some means of determining the accuracy of
the analysis and often this is not possible except by
direct comparison with the actual solution of the system.
With the V surface modeling technique, however, one indica=-
tion of its accuracy is how closely the V surfaces are

oriented when their shapes are matched.

5.2 Suggestions for Further Research

This thesis exists to introduce an approach which
as of now appears promising. The paper merely points out
the fact that the behavior of a control system is related
to the shape and orientation of its V surface. It is not
meant to be a ftinal conclisivec answer to the problem of
modeling and much work yet remaiuns oo LI 2inc, some of
which is suggested below.

First of all there is the problem of systems with
zeros. This problem exists because the phase variable
formulation of the system matrix A is not unique when zeros
are allowed.2 As seen from Eq. (2-2), the use of phase
variables results in an é.matrix which is dependent only

on the characteristic equation of the system. When the

types of systems considered are limited to the form of
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Eq. (2-1), then the characteristic equation uniquely
determines the system. But when the systems can have
zeros, the characteristic equation does not uniquely
determine the system; i.e.y, the A matrix can represent
many different systems with the same characteristic equa-
tion. The use of phase variables still results in a valid
model, but difficulty arises in interpreting the model's A
matrix. Since the matrix defines only the characteristic
equation of the model, it is impossible to know whether the
model has a zero or the value of this zero. To make the A
matrix unigue a new set of variables must be used to
describe the system. These variables must obey certain
rules. Of course they must yield an A matrix which is
unique for any type of system. Also, for the matching of
V surfaces to have any meaning, the space containing these
surfaces must be identical for the model and the system.
Iu oilizz wowde. the first k variables of the system must be
identical to the k variables of the model, where k is the
order of the model. Finally, the method of choosing the n
variables of an nth order system should be consistent for
all types of systems. If such a set of variables exists,
then formulas for the model can be developed as in Chapters
3 and k4.

As mentioned previously, when the modeling method
is dependent on phase variables, it is still valid even

when the system to be analyzed contains zeros in its open
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loop transfer function. The resulting A matrix is valid
but it specifies only the characteristic equation of the
model. By some additional work it may also be possible to
determine the exact form of the model. One way which seems
to give reliable results is to observe the effect that the
zeros have on the characteristic equation. For an nth

order system of the form

+ G(S) - cn—ls + o o e+ co
Gls) = —— n-2
- s(s +b .S + e o e +bzs+b1)
the characteristic equation is
n n-1 2 1 _
s +(bn_l+cn_l)s + ¢« ¢ o *s (b2+02)+s (b1+cl)+co =0

When G(s) has no zeros, then only c, appears in the

0]
characteristic equation. When one zero is present, then

¢y is present in the s term. For two zeros, c, is present

2

in the s term auu “1 4w Lo tho o tarm. (One wav to deter=-

mine the zeros of the model then is to make the effect of
the zeros on the characteristic equation the same for both

the model and the given system. For example, if the given

system has two zeros, then Cy is some proportion of the s2

term and cy is some proportion of the s term. To specify

the zeros of the model, set c_, and c, in the same propor-

2 1

tion in the model's characteristic equation as they were in

the system's characteristic equation. Unfortunately such a
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scheme works only when the order of the model is one
greater than the number of zeros in the given system. For
systems of higher order it is not at all clear what should
be done and some other method must be developed.

Another interesting question is whether some
physical meaning can be given to the difference in the
orientations of the two V surfaces when their shapes are
matched. Remember that the modeling technique involved
the matching of the shapes of the surfaces while ignoring
their orientations. The modeling process was said to be a
good one when the two surfaces were oriented in the same
direction and worse when the angle between them increased.
Throughout Examples 3-1 to 3-3 (underdamped third order
systems) it was apparent that mat¢hing the shapes of the V
surfaces matched the frequency and damping factor of the
model and the given system. However the responses of the
model and the given system were not matched with respecti
to phase and the model tended to lead the system more and
more as the approximation became worse (Figs. 3-7 to 3-=9).

It would be interesting if this phase difference could

somehow be related to the difference in the orientations of

the two V surfaces. Then the behavior of the system would
be known exactly by adjusting the phase of the model's
response.

While the general modeling technique of matching V

surfaces for one choice of V is an acceptable method for
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determining modelsy, it has one big disadvantage~-~the proc-~
ess requires that matrices be transformed into their
diagonal form. It is not hard to transform 2 by 2 matrices
into their diagonal form but this process is much more
difficult for 3 by 3 matrices. The work is further
complicated when the M matrix cannot be obtained in
diagonal form by a proper choice of V. Such problems were
encountered in the development of the third order model.

It would indeed be fortunate if an alternate method could
be found for the third order model as it was for the second
order model. This alternate method involves taking the
determinant of a matrix--a relatively simple process. This
approach was tried on third order systems by matching the
determinants for Gl = -xf, 02 = -xg, &3 = -xg. As was seen,
these choices for G gave conflicting requirements on the
parameters of the model. Perhaps different choices for G
would give nonconflicting conditions accurately determining
the model. At present these choices are not apparent.

| While this work was approached from the point of
view of analysis, the techniques developed can also be
applied to the synthesis or compensation of control systems.
In analysis the system is completely fixed and the model is
completely free. The alternate problem of synthesis has
the system free and the model fixed. Usually the system

cannot be completely free and only one or more parameters

are adjustable. The problem now is given a desired model,
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adjust the free parameters of the system to give a V
surface which most closely matches the V surface of the
model. In this context the model is actually the desired
system. Such an application could employ a search tech-
nique using a digital computer to match the V surfaces.

An alternate and perhaps more useful approach to
the problem of synthesis is the utilization of compensating
networks. First the model is obtained for a given fixed
control system. Then instead of directly compensating the
given systemy, a network is used to compensate the model.
Hopefully, this compensating network has the same desired
effect when it is also used with the given system.

Lasty, because the modeling method is independent of
the frequency domain, this technique also suggests itself
for use in analyzing nonlinear systems. With nonlinear
systems however, the V surfaces do not necessarily form a
nasted set but may vary in shape in different regions of
the state space. Thus the linear models to this nonlinear
System are valid only in regions of the state space
containing V surfaces of similar shape. In another region
of operation a different linear model is needed, as
expected. In addition, it does not seem unreasonable to

attempt to find nonlinear models for nonlinear systems.




APPENDIX A

TABULATED P MATRICES FOR GIVEN Q MATRICES3

xTP.x) for
—— —1-

The following tables give P. (v

Q. (V = -xTQ.x). Q, is chosen with q;; =1 and all other

elements equal to zero. The system matrix is assumed to

be given in terms of phase variables.

0 1 0 e o o O
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APPENDIX B
FREQUENCY DOMAIN MODELS

It is possible to obtain a second order model of
any order system by matching certain frequency domain
characteristics of the model and the system. One such
method matches the phase margin and the frequency at
crossover of the two systems. The resulting model is
called the phase margin model and it is used quite exten-
sively in the analysis and synthesis of systems. Usually
rhase margin techniques are not associated with a model
even though the existence of such a model may be indirectly
assumed. For example, in designing or analyzing control
systems phase margin is used as an indication of the
behavior of these systems. From experience with second
order systems, a phase margin uvi osuwm. pi-ticontar wvalue
indicates that the higher order system will have a certain
response. In other words it is assumed that the higher
order system will behave similarly (have the same over-
shoot) as the second order system which has the same phase
margin. This second order system therefore can be thought
of as a model of the given control system. When the
crossover frequencies are also matched the model and the

given system have similar rise times. The second order
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system which matches both the phase margin and crossover
frequency of the given system is termed the phase margin
model. The procedure to obtain the phase margin model is
to find the phase margin and crossover frequency of the
given control system and then adjust the two variable
parameters of the model to yield these same values. An
example illustrating this procedure is contained in
Example 3-1.

Another method of modeling is based on the root
locus technique. The model consists of the dominant closed
loop poles of the given syvstem and the remaining poles are
ignored. A second order model, for example, consists of
only the two most dominant poles. To obtain the model it
is necessary to find all of the closed loop poles of the
system=-a difficult task when the order of the system is

high and some poles are complex conjugates.
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ABSTRACT

Modern, time-domain methods are used to discuss
the control of linear, constant-coefficient systems with
unconstrained control effort. Two rather general Per-
formance Indices are used to define two related problems,
the Regulator Problem and the Servomechanism Problem.

The Regulator Problem uses the Performance Index

a0
Jg. = § x'qudt.

o

The solution to the Regulator Problem requires a control
structure which contains an inner loop for each of the
state variables in the problem formulation. It is shown
that this structure permits control over the closed-loop
poles of the optimal system and cancellation of unwanted
zeroes, but no new zeroes can be added. Three methods are
given for computing explicit optimal control systems for
specific examples, the parameter optimization problem is
reviewed and discussed in relation to the Regulator Problem,
and a method is given for introducing zeroes into the
Regulator Problem.

The Servomechanism Problem uses the Performance

Jg = foo [(r - E'_}g)z + uZ]dt.
o

Index

The solution to this problem consists of two parts, the
prefilter and the regulator. The prefilter shapes the
reference input signal before that signal is applied to
the regulator portion of the optimal system. The
regulator is found by solving the Regulator Problem.

vi



CHAPTER I

INTRODUCTION

The most familiar problem in automatic control
is the control of linear, constant-coefficient systems
with unconstrained control effort. The conventional
approach to this problem utilizes Laplace transform
techniques to convert the differential equations of the
sysfem into algebraic equations. The resulting trans-
formed equations are often displayed pictorially in
block diagram form, and the most widely studied block
diagram is the single-loop, unity-ratio configuration.
Methods based upon use of the Laplace transform are
generally referred to as frequency-domain techniques.

This thesis uses modern, time-domain methods
to discuss the familiar linear control problem mentioned
above. The time-domain approach requires a system
description in terms of first-order differential equa-
tions obtained directly from the differential equations
describing the system. In keeping with conventional
methods the results of a time-domain design may also

1



ultimately be described in terms of a block diagram.
The design results in a configuration differing markedly
from that resulting from the use of frequency-domain
techniques.

Design specifications for use with frequency-
domain methods of design are quite diverse; e.g.,
bandwidth, per cent overshoot in response to a step
input, and velocity error constant. In any given prob-
lem, specifications may be given in both the time domain
and the frequency domain. In the time-domain approach
to system design all performance requirements must be
embodied in a single specification called the Performance
Index. Two rather general integral Performance Indices
are used in this thesis to define two related problems,
the Regulator Problem and the Servomechanism Problem.

The Regulator Problem uses the Performance Index

.00
Jo = | x'qxdt (1-1)
o

The solution to the Regulator Problem requires that the
uncompensated system be given an input which is a linear
combination of the state variables of the system. This

result specifies the structure of the optimal control



system as one with an inner loop for each of the state
variables in the problem formulation. Utilizing this
structure, it is possible to show that the use of state
variable feedback allows the designer to control the
locations of the poles of the system and to cancel
unwanted zeroes, but no new zeroes can be added. Three
methods are given for computing explicit optimal control
systems for specific examples, and the limitations of
each method are discussed. The parameter optimization
is defined and the relationship between this problem and
the Regulator Problem is explained. An attempt is made
to relate the Regulator Problem to conventional frequency-
domain design, by showing how zeroes can be introduced
into the Regulator Problem.

The Servomechanism Problem uses the Performance

Index

PRNLe « I 1
Jg = J ’(r - 3'5)2 + uzf
o - ¢

dt (1-2)

The solution to the Servomechanism Problem is closely
related to that of the Regulator Problem. It consists
of two parts, the prefilter and the regulator. The task

of the prefilter is to shape the reference input signal



before the signal is applied to the regulator portion of
the optimal system. The regulator is found by solving
the Regulator Problem, and as a result of this obvious
connection between the two problems, results obtained
for either problem apply, in part, to the remaining one.
Throughout the thesis, a variety of techniques
for obtaining explicit numerical solutions is presented.
In the 1ntereéts of both clarity and brevity, full use

is made of examples.




CHAPTER 11

SYSTEM DESCRIPTION AND DESIGN OBJECTIVES

In this chapter notation and system representation
are discussed, controllability and observability are de-
fined, and the design of linear systems is cast into
the framework of the modern state variable approach to
optimal control theory.

The physical systems considered here are those
which can be adequately characterized by a set of ordinary
linear differential equations with constant coefficients.
Systems having no input, or forcing function, (autonomous
systems) as well as those having a scalar input (non-
autonomous systems) are studied. It is assumea tnat
these differential equations have already been written.

In the state variable approach to the design of
linear systems, the differential equations of the systems
are replaced by a set of first-order differential

equations of the form

x = Ax + bu
(2-1)

y=C'x



where x is an n-vector, the state of the system

>

is an n by n matrix of constants, the system matrix

lo

is an n-vector of constants, the control vector

c

is a scalar, the control function

is a p-vector, the output of the system

ke

C is an n by p matrix of constants

Frequently the output y will be a scalar instead
of a vector; in this case, the matrix C is replaced by
the vector ¢ and y becomes a linear combination of the
state variables,

y =c¢'x (2-2)

The notation indicated above is used throughout.
Underlined lower-case letters refer to vectors, and the
elements of the vector are denoted by single subscripts.
Lower-case letters that are not underlined indicate
scalars or constants. Upper-case letters refer to
matrices, and the elements of the matrix are denoted by
the corresponding lower-case letter with double subscripts.
1f F is an arbitrary matrix, then F' is its transpose;
if F is square and nonsingular F~l denotes its inverse.
The square matrix F is called symmetric if F' = F, and

positive definite [positive semidefinite/ 1if x'Fx is




a positive definite [bositive semidefinitg] function
of x; i.e., one which is always positive [hon-negativ€7
except at x = 0, where it is zero.

The concepts of ''controllability' and
""observability" introduced by Kalman (1963) are needed
for a reasonably general discussion of linear systems.
Although of fundamental importance from a mathematical
viewpoint, these concepts are sufficiently general that
they are usually not a major concern for physical systems.
Thus it is sufficient to give brief definitions and ex-
plicit criteria for determining whether the system of
equations (2-1) represents a completely controllable and
completely observable system.

A system is completely controllable if all state
variables in the representation (2-1) can be aifected
by some suitable choice of the control function u(t).

An equivalent mathematical statement is

rank (b, Ab, . . . , A™1lb) = n (2-3)

The expression in parentheses in (2-3) is an n by n

. n-1
matrix whose columns are the vectors b, Ab, . . . , A b.

A system is completely observable if all the state variables

of the system contribute to the output of the system during



a finite time interval. An equivalent mathematical
statement is

rank (C, A'C, . . ., (A")™1lc) = n (2-4)

1f the matrix C in (2-1) is replaced by the
vector ¢, then the resulting system is completely con-
trollable and completely observable if and only if the
numerator and the denominator of the transfer function
c'(sI - A)';E have no common cancellable factors (Leake
1964, p. 10). The transfer function given above is
merely the overall transfer function y(s)/u(s). This
can be verified as follows. Taking the Laplace transform

of (2-1) under the assumption of zero initial conditions

gives
sx(s) = Ax(s) + bu(s)
(2-5)
y(s) = c¢'x(s)
Solving the first equation of (2-5) gives
x(s) = (sI - A) 'bu(s) (2-6)

Substituting (2-6) into the equation for y(s) and forming
the ratio y(s)/u(s) gives the desired result; namely,
y(s)/u(s) = c'(sI -A)"'b
In order to put the design of control systems

on an analytical basis, a criterion of performance or



Performance Index is introduced. The Performance Index
is usually an integral selected by the designer as the
best single means of judging the behavior of the system.
Once the selection of a Performance Index has been made,
the problem is converted to one of applied mathematics,
with the object being to minimize the value of the chosen
integral.

For example, a possible choice for a Performance
Index is the familiar integral of the squared error,

s =
;

g= | i'c(t) - r(t), Zae = | e(t)zdt (2-7)
o - - o

By integrating the square of the difference between the
desired output r(t) and the system output c(t), the
Performance Index attempts to characterize the accuracy
of the control system. The best system is the one which
causes the Performance Index to be minimized; referring
to (2-7), the best system is the one whose output is as
nearly equal to the desired output as design freedom
permits.

The two basic problems considered in this thesis
are those of finding control functions u which give the

minimum values of one of two particular types of
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Performance Indices. The designer is presented with the
set of equations (2-1) and is asked to find the control
function u that minimizes one of the following two

Performance Indices:

Jr= | (x'Qe +ud)de (2-8)
(o}

Jg = (r- ¢'x)2 + 02 at (2-9)

~———

-

o
These two problems, known as the Regulator Problem and
the Servomechanism Problem are defined more precisely

and considered in detail in the ensuing chapters.



CHAPTER III

THE REGULATOR PROBLEM

In this chapter the first of the two problems
introduced at the close of the previous chapter is de-
fined, its general solution is studied in terms of the
structure of the optimal system, and three methods are
presented for obtaining specific solutions to the design
problem. The relationship between the Regulator Problem
and the parameter optimization problem is discussed and
a method for introducing zeroes is described.

The following statement of the Regulator Problem
is adapted from that cof R. J. Leake (1964, pp. 4-5):

Regulator Problem For the system (z-1i,; wacol

x(0) represents a set of nonzero values of the
state variables at t = 0, find a continuous
control function u such that the system is
transferred from its initial state x(0) to

the origin of the state space in such a way
that the Performance Index

5= [ (x'ex + uyat (3-1)
(o]

11
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is minimized. The matrix Q is symmetric and
positive definite or semidefinite.

A pictorial interpretation of the Regulator Problem
is shown in Fig. 1. The figure shows a block labelled
"controller' having as its inputs the state variables
and an as yet unspecified vector function r(t). These
two vectors are combined to produce the scalar control
function u which transfers the state of the system to the
origin while minimizing (3-1).

The central theorem relating to the Regulator
Problem, proved in Kalman (1964), is presented below.

Theorem I Assume that (2-1) represents the

equations of motion of a completely controllable

system and define a Performance Index

T
JT) = J (x"Qx + uZjau (1221
o
where the matrix Q is symmetric and positive
definite or semidefinite. Let P(t) = 77 (t;T,0)
be the unique n by n symmetric matrix solution
(where the parameters T and 0 correspond to
the upper and lower limits in (3-2)) of the

matrix Ricatti differential equation
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dp ,
—a—t=PA+AP-Pt_>_lg'P+Q (3-3)

satisfying the boundary conditions
P(T) = TV (T;T,0) = 0. (3-4)
Then the optimal control function for the Regulator

Problem exists, is unique, and is given by

u® = -x'Pgb = -k'x (3-5)
where
Po = lim 77 (0;T,0) (3-6)
T or;
and
k = Pgb (3-7)

In addition, the minimum value of J, is given by
3y = x'(0)Px(0) (3-8)

Furthermore, if the system is completely

observable as well as completely controllable

and if the matrix Q 1n (3-1) aua (2 2} ic re-

placed by cC', P, is positive definite and

o
the resulting optimal system is asymptotically
stable.

Theorem I states that complete controllability
is a sufficient condition for the existence of a solution

to design problems which use Performance Indices of the

form (3-1). For systems which are also completely
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observable, the theorem assures the designer that he will
wind up with a compensated system which is stable.

The theorem also shows why an output equation
(y = C'x) is included in the system equations. The output
equation arises as a result of writing the matrix Q as
Q = ccC' (3-9)
In the usual design procedure the designer decides on
a positive definite or semidefinite matrix Q; and as an
aid to his intuition the resulting quadratic form can

be written as

2
x'Qx = (x'C) (C'x) = y'y = ||1] (3-10)
so that J, becomes
- (X, 2 2
Jy = ( (v + u))de (3-11)
o

The egquation (3-4), where the elements of k are
referred to as the 'teeapback cuceiiicicais,' supreccaec
the fact that the optimum control function for the
Regulator Problem is a linear combination of the state
variables. This is a highly important result, as it
specifies the form of the optimum system. To illustrate
this consider the following example:

Example 1

It is desired to compensate a system having the

following uncompensated overall transfer function
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y(s) _ 10(s + 2)
u(s) (s + 4) (s + 3) (s)

where y(s) is the Laplace transformed output and u(s)

is the control function. A block diagram for the un-
compensated system is shown in Fig. 2(a). Note that the
system is non-autonomous, since it has an input u. If
the design were carried out by using a Performance Index
of the form (3-1) and the state variables shown on the
figure, then the compensated system would have the
appearance of Fig. 2(b). In Fig. 2(b) an input r has
been added to keep the system non-autonomous.

The numerical values of the feedback coefficients
for Example 1 are as yet unspecified since no procedures
for calculating the k; (feedback coefficients) have yet
been given. UHowever, the overall transfer function for
the compensated system 15 easiiy ocin £t he

y(s) _ 10(s + 2)
r(s) (k3 + 1)s3 + (S5k3 + 10kp + 7)s* +

+ (6k3 + 20kp + 10kj + 12)s + 20k
so that by proper choices for k;, kp, and k3 any three
desired pole locations can be obtained, but the zeroes

remain unchanged. This complete control of the pole

locations and lack of control of the zero locations is
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b) Compensated System

Fig. 2 Compensation Using State
Variable Feedback
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a general consequence of compensation by state variable
feedback (Brockett 1965).
That the first part of the previous statement is
true may be seen by considering a more general system with
the overall transfer function

n-1
ZSSZ CnS + Ch-18

u(s) - gh

n-2
+ . + C]. (3-12)

+ags™l . L L+ a2
Representing the system in phase variables the equations

of motion become

— ) ]
0 1 0 0 0
0 0 1 0 0
X = x + u
N 0 o . . . 1 0
—al -a2 -a3 . e e -an 1
B IRRFEREY
y = ] ) ©3 - - “n x

The assumptions of controllability and observability
assure that any single input, single output system has
this unique phase variable representation; see Kalman
(1963).
Suppose that the characteristic equation associated

n-1 ,

with the desired pole configuration is s" + r_s NET
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If the control function u is set equal to -k'x with the

k; defined by
(3-14)

k{ = ry - ay, kg = 1y - a,, ...,kn = r - aj

then in the autonomous system each -a; in the system matrix

will be replaced by -aj - ( rj - aj) or -rj, and the over-

all transfer function will have the desired pole configuration.

Thus the use of state variable feedback gives the designer
both complete control over the pole locations of the system
and the means by which unwanted zeroes can be cancelled.

In the above system representation it is clear
that no new zeroes can be added by using state variable
feedback. Brockett (1965) shows that this is always the
case; namely, for a completely controllable and observable
system using state variable feedback, no new zeroes can
be aaaeu.

In one sense it is unfortunate that no zeroes
can be added since the most common forms of linear com-
pensation (lead, lag, and lead-lag) require at least one
zero in the compensator. In another sense, however, zeroes
are not necessary because for a given Performance Index
of the form (2-6) Theorem I guarantees that the designer
can always get the best design by feeding back all the

state variables. However, if a zero is included in the
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forward transfer function, as with a lead or a lag
network, then the pole of the lead or lag compensator
will cause an increase in the order of the system. It
is entirely possible, indeed probable, that the value of
the Performance Index for the optimized n + l-order system
may be less than that for the optimal n th order system.

A means for introducing zeroes into the Regulator Problem
is given later on in this chapter.

There are three wethods £or finding the elements
of k, the coefficients of the state variables in the
expression for the optimal control function in the
Regulator Problem.

Method 1 Solution of the Ricatti Equation

Method II  Kalman's Equation

Method 1I1 Bode Diagram Design

Method I Solution of the Ricatti Equation

The first method for calculating the feedback
coefficients requires the solution of (3-3) in Theorem I
for the unknown symmetric matrix P. Once P is known, P,
is found by calculating the limit in (3-6) and then the

feedback coefficients are obtained from (3-7). The

difficult step in this procedure for finding k is in
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obtaining a solution to the nonlinear Ricatti differential
equation. Even for second-order systems the matrix dif-
ferential equation is difficult to solve (Leake 1964),
and so numerical techniques must be used, although
numerical solutions are not shown here.

An algebraic matrix equation which can be used to
find P, is also available. By (3-6) P  is an equilibrium

state of the Ricatti equation; accordingly, by setting

[N
o

= 0 in (3-3)

Q.
ag

P,A + A'PO - Po@'Po +Q=0 (3-15)
Hand solution of (3-15) is tractable for second-order
and even third-order systems. The equation is difficult
to solve by numerical techniques because it is a set of
nonlinear equations and thus the solutions are not unique.
Kalman (1964) shows that (3-15) has a unique solution
which is identical to the solution of the Ricatti dif-
ferential equation if the system is completely observable
and P, is positive definite.
Example 2

Consider the design of the first-order system

>
X = X 4+ u
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through the use of the Performance Index

2

s (¥
;
J= i (x
o

+ uz)dt.

The Ricatti differential equation is

}
a1a
rt o

= PA + A'P - Pbb'P + Q
which in this first-order case is the scalar equation

- %E = (-Dp + (-Dp - p(1)(L)p + 1

2 11

=-2p - P
along with the boundary condition
p(T) = ™(T;T,0) = 0
Using the technique described by Leake (1964) the

analytical solution to the above equation is

-
p(t) = ﬁgxp(-d (t-T)) - exp(N2(t-T)) —
T V2 + Dexp{V2{e-T)) + (V2 - Dexp(42(t-T))
Ta:\i;‘g :h: 1:_-_—:i0_— :\rocr‘v“ihpd ‘in (3‘6)
Py = lim exp(N2T) - exp(-¥2T)
Tow (W2 + 1)exp(~2T) + (v2 - 1)exp(-42T)
=42 -1
From (3-7)
k = pgb

"\I—Z_ -1
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Using the algebraic Ricatti equation for this example leads
to a quick solution. The equation (3-15) becomes
2 2
-2pg - Pg  + 1 =0

and the unique positive definite solution is

Po = qﬁf- 1

Method II Kalman's Equation

Kalman (1964) has fqund an algebraic equation
which can be solved directly for the feedback coefficients,
without first finding the matrix P,- This equation offers
some computational advantages over the algebraic Ricatti
equation; moreover, it is a frequency-domain equation
and thus provides a link between conventional and modern
control theory.

The derivation of Kalman's Equation starts with
the algebraic Ricatti kEquation (3-13), itewiiiien as

-PA - A'P, = CC' - POEQ'PO. (3-16)
Adding and subtracting sP, gives

PO(sI - A) + (-sI - A'")P, = CC' - POEE’PO. (3-17)
Letting

0(s) = (sI - A)™" (3-18)
and multiplying (3-17) from the left by Q’@'(-s) and
from the right by ¢(s)b gives

(3-19)
B'®'(-s)Pgb - b'¢(s)Pgb = b'd'(-s) [CC' - Pbb'P, ]| O(s)b.
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From Theorem I,
k =Pgb (3-20)

so that (3-19) becomes
(3-21)
B¢ (=s)k - b'9(s)k = b'P(-s)CC'P(s)b - b'P’ (~s)kk'§(s)b

Transposing the second term on the right-hand side of

(3-21) and adding 1 to both sides gives
_ (3-22)
1+ k'0¢-s)b] [1+K'Gs)b] =1+ b'¢'(-s)cC'dls)b

or

[ DY I OV TN
I.L +5'\V\J‘-“)

J

12 v o Herheswn
”" Y o/

| C = Il 2 (3-23)

fcr

This is Kalman's Equation. The matrix ¢(s) is called the
resolvent of A and is equal to the Laplace Transform of
the state transition matrix.
Example 3

Compensate the system shown in Fig. 3(a) by using
the Performance Index

0
J = ,'r (xl2 + uz)dt.
o}

The equations of motion are

- -

‘ -1 1 0

x = X+ u
0 0 10

¢ = L 0, x

Using (3-18) the resolvent of A is

1 1
s + 1 s(s + 1)

0(s) =

0 1
S




u 10 X 1 X, =y
™ s s + 1
‘ a) Uncompensated System
r + 10 1 x1
s s +1
| W S P A
270

.640 ‘*—————J

b) Compensated System

Fig. 3 Block Diagram for Example 3

25
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giving
Lo |2 4 2. 2 2 2
1+kl¢)(J )b = .,_,+(100k2 20k1+1)u.) 4-1001(1 +200k1k2+100k2
wl' + u.')2
and
1+ c'0(w)b '7- =Wt L w2 4 100

W+’
For (3-23) to hold for all W the following equations must

hold:

2

100k,” - 20k, = O

1

2
1001(1 + QOOklkz + 100k22 = 100

Solving the above two equations yields the numerical
values for the feedback coefficients,
ky = .640, k, = .360

The compensated system is shown in Fig. 3(b).

Method 111 Bode vlagrdm Ucoipan

This third method for calculating the feedback
coefficients makes use of a special case of Kalman's
Equation; namely, the case in which the matrix C in
(3-23) is replaced by the vector ¢, so that the Performance
Index becomes

P
J = j' (x'cc'x + uz)dt (3-24)
o

1

fm’ + CaXn + +cx)2+2]dt (3-25)
J Lﬁclxl CpXg “es *n u
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Pesides the assumption that Jr is of the form given in
(3-25) it will also be necessary to assume that the fixed
plant contains at least one pure integration.
The block diagram of Fig. 4 is useful for discussing
Method III. From the diagram u = ry - k'x. With this

substitution in (2-1) the system equations become

%= Ax + b(r_ - k'x)
y = ¢'x (2-27)
where A = A - bk'. The input to the block labelled
G(s) is u(s), while the output is c'x(s), giving
G(s) = €'x(s)
u(s)
= ¢'0(s)bu(s)
uls)
= < 'PLs)p (2 22}
Similarly, the transfer function H(s) is given by
H(s) = k'x(s)
c'x(s) (3-29)

and the negative loop gain, A(s), is given by the product

of (3-28) and (3-29),

1. This is more restrictive than need be; in more
precise terms, it is necessary to assume that G(s) has
high gain at low frequencies and low gain at high
frequencies.




|
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Fig. 4 An Aid in Understanding Method IIIL
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A(s)

G(s)H(s)

=
1%
~
n
~—

c'0(s)b

In
1%
P
n
N’

c'0(s)b . K'0(s)bu(s)
- T <c"0(s)bu(s)

k'¢(s)b (3-30)

L]

The overall transfer function y(s)/ro(s), designated
M;(s), is found from (3-26) to be

M;(s) = c'd, (s)b | (3-31)

where Qk(s) = (sI - Ak)'l.
Substituting (3-28) and (3-30) into Kalman's
Equation (3-23), gives

|1 +aGw)| 2 =1+ |6(iw)| 2 (3-32)

th
-t
I
®
1]
=
D
3
D
o
=4
n

as the equation which determines the wvalues o

In the design procedure using Method III three
properties of (3-32) are used. These properties hold when
G(s) has at least one integration.

a) for smallw, |1+ GH(jwW)| = G(jw)

b) for largew , |1 + GH(j»))| = 1

c) when G(jw) =1, |1+ GH(GGW)| =NZ
The design procedure consists of using the Bode diagram

of G(jw ) and the three properties above to obtain a
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good approximation to 1 + GH(jw ), and then finding k.

The steps are
Step 1

Step 2

Step 3

Step 4

Sketch the Bode diagram of G(j W),

For values of W less than the unity
crossover frequency of G(jwW) ,

match the Béde diagram of 1 + GH(jw)
with that of G(jw).

For values of ) greater than the unity
crossover frequency of G{jw) ,

make the Bode diagram of 1L + G(jw)

be constant at the value 1; this can

be accomplished by using a Butterworth
polynomial of the same order as the

ude of the slope of the Rode
diagram of G(jw) at crossover.2

By using the results of the previous three
steps form an approximate expression for
1 + GH(s) and equate it to the true

analytical expression to evaluate k.

This procedure is illustrated in the following example.

2. Choosing the characteristic frequency of the
Butterworth polynomial as the crossover frequency assures

that _at crossover the Butterworth polynomial has a magnitude

of 42, so that property (c) will be satisfied.
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Example 4

Consider the uncompensated system

G(s) = ” 1438
s(s + 3.25 + 3.56)

whose phase variable representation is

(0 1 0| 0]
X = 0 0 1 | x+0]| u

|0 -3.56  -3.2] 1 |
y = 1438x1

The Performance Index according to (3-25) is

R [(1438x )2 + u?] a4t

(o]

To carry out Step 1 write

c(s) = 404

s (=2 + 25’§ﬁ6)s + 1)
D L.O7

Ny

6

B~

Thna DAada Aiaovam annoare in Fieo. §. Following Steo 2
- it et & 4 & —~ —

the low frequency part of 1 + GH(s) is given by

1438
+ 3.2s + 3.56)

s(s2

For frequencies greater than the crossover frequency u%
Step 3 requires that |1 + G(jW)H(j W) | be 1; therefore

a third-order Butterworth polynomial is chosen, namely

1 3 2 2 3
m(s +2uOCs +2u2:s+wc)

C



1+ GH(jo)

Fig. 5 Bode Diagrams For Finding the
Feedback Coefficients of Example 4

32
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The quantity 1 + G(s)H(s) is then approximated by
(3-33)
21438 +2\Dzs+u)3)
s(s“ + 3.2s + 3.56) c c

2

1 3 .
“%3 (s7 + 2 uJCs

It is now clear that ll + G(juJ)H(juJ)I =/E-when
s = jw,, since the first factor in (3-33) has a magnitude
of 1 at crossover and the second factor (the Butterworth
polynomial) has the magnitude'vzz thus property (c) is
satisfied.

The analytical expression for 1 + GH(s) is found

after forming H(s) through the use of (3-29),

H(s) = klxl(s) + kzxz(s) + k3x3(s)
1438x¢(s)

- k3s2 + kgs + ky
1438

(3-34)

Thus

C 83 4 (3.2 + k,)s? 4 (3.56 + k,)s + k,
s> + 3.2s2 + 3.56s

- -_— Nwed _ N\
L T U\dju\oy

Step 4 is carried out by finding the values of ki, k2, k3
and cuc which cause (3-33) and (3-34) to be equal. Those

values are

3
e 41438 = 11.3

w
ky = 1438, k, = 252, ky = 19.3

By comparison, a digital computer solution of the Ricatti

differential equation yields k; = 1437.93, kZ = 251.8, k3 = 19.47.
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In Example 4 phase variables are used and as a
result the designer has no opportunity to choose the
Performance Index - he has to accept as the output of the
system a linear combination of the derivatives of x in
which the weighting factors for the derivatives are de-
termined by the zeroes of G(s). A more serious objection
to the use of phase variables is that these variables
represent successive derivatives of X1 and for systems
whose order exceeds two are nct physically available for
use as inputs to the linear amplifiers in the inner
feedback loops of the compensated system.

Method III can be applied to some systems which
are expressed in terms of variables which do not represent
successive derivatives. The essential requirement for
the successful application of the method is that the approxi-
mate expression for 1 + GH(s) have the same form as the
true analytical expression. The presence of zeroes in
G(s) makes it impossible to match the approximate expression
with the analytical expression, unless phase variables are
used. When there are no zeroes present the method will be
successful for some choices of the Performance Index; this

is shown in the following example.
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Example 5
Consider the same system that was used in Example 3,
in which phase variables were not used. The uncompensated

transfer function is

10
6(s) = Ts)(s + D

and using (3-29), H(s) is found to be

k,s + k., + k

so that

10(kzs + k1
s(s + 1)

GH(s) = + k2)

The Bode diagram for G(jw) 1is shown in Fig. 6. From
the diagram the low-frequency part of 1 + GH(s) is given
by G(s), and a second-order Butterworth polynomial is
n22dcd £2or rhe nvaner hich-frequency behavior. Thus the
approximate expression for 1 + GH(s) is

2

2
1 + GH(s) = 10 s + JE’Q%S + ‘Uc

w. (s)(s + 1)

The analytical expression for 1 + GH(s) is

2

L + GH(s) = s° + (10k, + 1)s + 10(k) + k)

(s)(s +1)

Making both expressions identical requires

W = 3.16, ky = .652, k, = .348



+ 100

\ 1 + GH(j w)
y 10 .~ 100
\o A

e

Fig. 6 Bode Diagrams For Finding the
Feedback Coefficients of Example 5

36
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These values of the feedback coefficients compare
favorably with the more accurate values given in Example 3.
In the preceding example we were able to apply
Method 111, despite the fact that phase variables were
not used. The Performance Index was
J = g’a}x12 + u2)dt
However, if the Performance Index is
oo
J = ~£ [(xl + x2)2 + uz] dt (3-35)
then the method cannot be applied becausc matching the
analytical expression and the approximate expressions for
1 + GH(s) requires
3 + 262 4+ (10k, + 1)s + 10k, - 10 . s* + 42 ws + w.
(s)(s + 1)2 w2 (s)(s + 1)

This is not possible, as the systems are of different order.
For a further discussion of Method II1 see Leake (1965).

The Regulator Problem has been discussed in some
detail; next, this design problem will be related to the
parameter optimization problem. The reduced Ricatti
equation, (3-15), was used in the development of Method II.
It is also the starting point for demonstrating the con-
nection between the Regulator Problem and the design of
linear systems using quadratic Performance Indices of

the form
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0o
J = \{- x'Dxdt (3-36)

o

where D is a positive definite or semidefinite matrix
(Kalman 1964). Before the connection is presented, it
is necessary to discuss the time-domain procedure for
solving the problem associated with (3-36), frequently
called the parameter optimization problem.

The procedure for solving the parameter optimization
problem consists of two parts: first, the evaluation of
(3-36) in terms of the elements of D and the system
matrix of (2-1); second, the selection of those values
of the adjustable parameters (as specified in the system
matrix) that give the minimum value of the Performance
Index.

To carry out the first pari ithe integrand in

(3-36) is set equal to a positive definite function ot Xx,

-V = x'Dx (3-37)
Then the intégral becomes
(3-38)
™ , x(o=)
3= -V(x)dt = -V(x) = -V(x(o0)) + V(x(0))
o x(0)

But for an asymptotically stable system, x(0) = 0 and the

value of J becomes

J = v(x(0)) (3-39)
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V must itself be a positive definite function;
that is, V can be represented by

V = x"Px (3-40)
where the matrix P, is positive definite and symmetric.
Taking the time derivative of (3-40) and comparing the
result with the integrand of (3-36) gives

A'Py, + PLA = -D (3-41)

After solving this set of linear algebraic equations for
the elements ot the matrix P,, (3-35) is used to write
the expression for J in terms of the adjustable parameters
and the initial values for the state vector x.

The second part of the design procedure for the

parameter optimization problem consists of setting the

Ft

ect to the adjustable

[}

T eey i
J O WAwiL

partial derivatives o

Lt

navamatare annal to zero. and solving the resulting
nonlinear equations for the optimum values of the adjustable
parameters.

Theorem 1 of this chapter guarantees that the
optimal control function for the Regulator Problem is a
linear combination of the state variables,

u = -k'x (3-42)
where the elements of k are as yet unspecified. If (3-42)

is substituted into Jr’ it becomes
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I = [ T(x'ox + ud)de
O
= [T(x'ex + x'kk'x)de
(o]
= jﬂb x'(Q + kk')xdt (3-43)
(o)

Note that (3-43) and (3-36) are of the same form.
Substituting (3-42) into the system equations (2-1) gives
X = Ax + bu

(A - bk')x (3-44)

so that the feedback coefficients can be considered as
adjustable parameters in the parameter optimization
problem defined by (3-43) and (3-44). For this parameter

optimization problem the equation corresponding to (3-41) is

(A - 25')'P0 + PO(A - bk') = -Q -kk' (3-45)
The above egquation can be made the same as the

reduced Ricatti equation by the roilowlng siLeps. riioc,
expanding the left-hand side, there results
' ' - ' = .0 - '
A'Py - kb P, + PAA POEE Q - kk

Utilizing the substitution given in Theorem I,

gives
A'Po - kk' + POA - POEQ'PO = -Q - kk'
or

' -
PoA + A'P_ - Pobb'P, + Q=0
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which is the reduced Ricatti equation. Therefore,
considering the Regulator Problem as a parameter
optimization problem leads to the same set of equations
as given in Theorem I.

There is another link between the Regulator Problem
and the parameter optimization problem. 1In the latter, the
system being designed has a fixed form with adjustable
gains and time constants. To write the expression for
the Performance Index, (3-30), it is ncccssary to choose
a set of initial values for the state vector x. The initial
conditions usually chosen are those which make the fesponse
of the autonomous system to these initial conditions iden-
tical to the error response of that same system to a
step input {(Gibscon 1963).

Now if the fixed form of the system were that of
the Regulator Problem - with all state variables being fed
back through linear amplifiers - then the values of the
adjustable parameters (the feedback coefficients) would
be independent of the choice of initial conditions. This
suggests that for both the Regulator Problem and the
parameter optimization problem the form of the optimum

system is the same.
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Engineers familiar with conventional, frequency-
domain compensation may object to the form of the optimum
system discussed above because no new zeroes can be added
by using state variable feedback, while even the simplest
lead and lag compensators introduce new zeroes. This
objection cannot be fully refuted although there is a

way of introducing adjustable zeroes into the Regulator

Problem.
Adjustabie zerves can be includcd in the Regulator
Problem by putting in tandem with the fixed plant a
compensator of the form
c =3 + z (3-46)
c s +p

In (3-46) the numerator represents the adjustable zero and
the denominator a term included tc make Gc realizable. 1If
the uncompensated system is of order n, the compensatea
system has order n + 1. In the compensated system there
are n + 1 state variables, n + 1 feedback coefficients,

and, in addition, an adjustable zero and an adjustable
pole. The best compensated system is the one which yields
the lowest value of some chosen Regulator Performance Index;

the best compensated system is specified by kl’ k2, "”kn’

z, and p.
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The computational problems posed by this method of
introducing zeroes are formidable, since the addition of
the compensator pole and zero causes the plant (the matrix
A in (2-1)) to be incompletely specified. The only feas-
able way of treating this problem seems to be to use a
digital computer to perform a two-dimensional search, look-
ing for the values of z and p that cause some given
Regulator Performance Index to take on its minimum value.

To solve the Regulator Problem for any given values of
z and p, any of the three methods discussed previously
could conceivably be used, but only Method I lends itself
to computer solution.

Although a rather lengthy discussion of the
Regulator Problem has been given, there are many questions

still unanswered. Some of these questions are raised in

Chapter V.



CHAPTER 1V

THE SERVOMECHANISM PROBLEM

The second of the two problems introduced in
Chapter 11 is defined precisely below. This definition
of the Servomechanism Problem is again adapted from that
of R. J. Leake (1964, p. 14).

Servomechanism Problem Consider the completely

controllable system (2-1) together with the
Performance Index

5. = [Tl - e'x)? & u?] ae (4-1)
s~ <2 - = "]
(o]

where the function r(t), the reference or desired
output, is specified to be one such that for some

continuous control function u, J. is bounded.

s

Assuming arbitrary initial conditions, find

a continuous control function u that minimizes JS.

A pictorial interpretation of the Servomechanism
Problem is shown in Fig. 7(a). It differs from the Regulator
Problem in that the quadratic form x'Qx in the integrand

of (3-1) is replaced by the square of the difference

44




r
\ - +
u X = Ax + bu Joe'x (O
controller ;::"'
a) Problem Interpretation
T z = -A'zt Zo ) b' (O X=Ax+bu _jC'x—y
kb'z-cr(t) x

N\

ey K| | wx (O

|
b
'

—5-

prefilter T itcpuiacoy =
I

b) Solution

Fig. 7 The Servomechanism Problem
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between

output,

46

the given reference output, r(t), and the actual

y(t).

The solution to the Servomechanism Problem,

presented in Leake (1964), is repeated here without proof.

deduced

parts:

Theorem II Let r(t) be of the form

(4-2)
r(t) = ry(t)exp(- Alt)+...+rm(t)exp(-;\mt)

where )]3 A gr tes A are complex numbers
with positive real parts and rl(t), cees rm(t)
are polynomials in t. Let z denote the pariicular
solution of the differential equation
2 =-(A-Dbk")'z - cr(t) (4-3)
where the elements of k are the feedback
coefficients of the corresponding Regulator
Problem. Then z exists and is unique, and the
sptimal cantval function for the Servomechanism
Problem for an r(t) of the form (4-2) is given by
4= (t) - k'x (4-4)
where
ro(t) = b'z(t) (4-5)
The sﬁructure of the optimal servomechanism, as

from Theorem II and Fig. 7(b), consists of two

the prefilter and the regulator. The form of the
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prefilter depends on the reference signal r(t), so that
to calculate z(t) it is necessary to know r(t) in the
interval (0, c© ). The regulator is found by solving the
associated Regulator Problem; this is an important ob-
servation because it implies that results obtained for
either problem (Servomechanism or Regulator) will apply,
in part, to the remaining problem.

Utilizing Theorem II and Kalman's Equation,
frequency-domain equations can be derived for the two
parts of the optimal servomechanism. For this purpose let
the symbol {'g+-denote an extraction of the multiplicative
factor containing the left half plane poles and zeroes and
let the symbol (] * denote the sum of those terms in the
partial fraction expansion of the enclosed gquantity which

anntnin tha TUP nnlec.

Recall that for a completely observable system the
regulator portion of the compensated system is stable.
Using the model shown in Fig. 4 of Chapter III the poles

and zeroes of 1 + GH(s) in the equation

y(s) _ G(s)

(4-6)
r(s) T+ ca(s) - Mi(®)

must lie in the left half plane. Now writing Kalman's

Equation as
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[1+6eas) ] [1+6H(-5)] =1+ 6(s)G(-5)
“ (4-7) -
={1 + G(s)G(-s)}F {1 + G(s)G(-s)}
it is apparent that
+

1 + GH(s) = {1 + G(s)G(-s)}

Substituting (4-7) into (4-6) gives

B G(s) (regulator) (4-8)
Mp(s) = {1 + c(s)c(-s)} M

This is the frequency-domain expression for the regulator
portion of the optimal Servomechanism. Using (4-3) and
the fact that z is the particular solution of that
equation, an expression of the prefilter can be derived

(Leake 1964). The result is

1
M, (s) =';Tg5 [Ml(-s)r(s)] ¥ (prefilter) (4-9)

Equations (4-8) and (4-9) present a relatively new
solution to an old problem. The Servomechanism Problem
was first solved by using Parseval's Theorem (Chang 1961);
Chang derives an expression for Ml(s)MZ(s), the overall
transfer function. This older treatment, however, is not
able to distinguish between the regulator and the prefilter
portions of the system; furthermore, the older results are
valid only for zero initial conditions. On the other hand,

Theorem I1 shows clearly that the optimal control system
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consists of a prefilter, whose output is the filtered
reference signal, and a regulator, which utilizes feed-
back from all the state variables. The feedback coeffi-
cients are independent of the reference signal and the
system is optimal for arbitrary initial values of the
state variables.

For higher order systems the spectral factorization
required in (4-8) is an obstacle in the design procedure,
unless graphical techniques are used. It is nccessary to
find the LHP factors of

1 + G(s)G(-s) = 0 (4-10)
This is a root locus problem, and as such is familiar to
engineers acquainted with conventional control theory.
Starting with the poles and zerces of G(s)G(-s) the locus

~f ¢ha vante nf (4-10) are sketched, and the LHP factors

are obtained. It is then a simple matter to compare the
expression for Ml(s) calculated from (4-8) with the
expression

G(s
1 + GH(s)

in order to evaluate the feedback coefficients.
The following example illustrates the two-part
structure of the optimal system and the use of root locus

techniques.
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Example 6
Consider the uncompensated system of Example 3,
Chapter I1I, where

10
6(s) = T)(s + D

Let the output be x so that H(s) is given by

1)
kixy(s) + k2x2(s)

H(s) =
’ x1(5)

=ky + kz(s +1)
and Performance Index is given by

Jg = fﬁa)[(r - xl)2 + uz-]dt
o

The Root Locus Plot of 1 + G(s)G(-s) is shown in Fig. 8.
From the plot,
{1 +6(s)6(-5)} T = (s + 2.3 + §2.2)(s + 2.3 - §2.2)

Substituting into (4-8) gives

10
G(s) ) () (s + 1)
{; + G(s)G(-s)} T T (s +2.3+ j2.2)(s + 2.3 - j2.2)
(s)(s + 1)

10
= 5% 4+ 4.65 + 10

The above expression for Ml(s) is to be compared with the

expression obtained by using (4-6), namely

G 10

1+ GH 82+ (10k, + 1)s + 10(k; + k,)
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N
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2.2
2
-2

Fig. 8 Root Locus Plot

for Example 5
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Equality of the two expressions for Ml(s) requires
ky = .64 and k2 = .36. These values of the feedback
coefficients are the same as those found in Example 3.

To complete this examplé the prefilter portion of
the optimal system will now be calculated. Let the

reference output r(t) be

r(t) = 1 - exp(-t)
so that
r(s) = 5T T I T s T D
Using (4-9)
10 ¥
M,(s) = (s)(s + 1) (s2 - 4.65 + 10)(s)(s + 1)
= (s)(s + 1) E ) s.ial}
= s + .36

The overall transfer function is given by Ml(s)Mz(s):

XSSZ = 10(s + .36)
r,o(s) s2 + 4.65 + 10

The compensated system is shown in Fig. 9(a). If
the older method of solution in the frequency domain were
applied to this example, then the same overall transfer
function would have been found. But then the designer

would have had no aid in determining the best way of



ra[s+.36 + 10 | X,
- §

.64

a) Optimal Realization of the

Compensated System

4]

s + .36

+ L
4.6s + 10 (s)(s + 1)

b) Alternate Realization

Fig. 9 The Compensated Systems

of Example 5
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x1=y
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implementing that overall transfer function. If he chose
to realize the optimal system as Fig. 9(b), for example,
then his design would be optimal only for zero initial
conditions, whereas Fig. 9(a) is optimal for any initial
conditions on the state variables x1 and x,.

It is well to note that the procedure for calculating
the regulator portion of the optimalrservomechanism can be
applied to the Regulator Problem when the Performance
Index J_ has the form

Jo= | (x'cc'x + u?) dt (4-11)

Thus the expression for Ml(s) given in (4-8) can be used
along with the root locus techniques to find a completely
determined expression for the overall transfer function of
the Regulator Problem; this expression can then be com-

. o . s AR - ca AL el onnd famen +h 1 g
paireu witn cue ond Sovoainld from tho bnowmledaa Af the

structure of the optimal system and the feedback coeffi-
cients can be evaluated. This sequence of steps for
calculating the feedback coefficients is very similar to
Method 111 and has already been illustrated in Example 6.
Some insight into the relation between the Regulator
Problem and the Servomechanism Problem can be obtained by

finding the prefilter for a fixed plant with at least one
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pure integration and a step-function reference input
(Leake 1964). With an integration in G(s), (4-6) yields
the result

MI(O) =1 (4-12)
Using (4-12) and (4-9), with r(s) = 1/s, it follows that
1 [r(s)Ml(-s)] +

r(s)

1
s

Mo (s)

= g °
=1
so that the overall transfer function of the compensated

system becomes

M(s) = Ml(s)Mz(s)

M;(s) (4-13)
From (4-13) it can be concluded that the regulator portion
of the optimal Servomechanism is by itself the complete
optimal SOLUT1ON WNEN L& [ELELEuLE Lupui 16 a eecp cuncsizon
and the fixed plant has at least one pure integration. This-
is an important practical result.

While the treatment of the Servomechanism Problem
has been less complete than that of the Regulator Problem
the two are so closely related that this manner of

presentation is justified.




CHAPTER V

CONCLUSIONS

Based on the research reported in Chapter III, it
appears that the Regulator Problem has been studied
thoroughly. The effect of feeding back all the state
variables on the poles and zeroes of the system is known,
and several methods are available for calculating the feed-
back coefficients for a given design problem; the relation
between the parameter optimization problem and the Regulator
Problem is clear.

However, the discu:ssion of the Regulator Problem
is incomplete for several reasons. First, there is no
good way of picking the matrix Q in the expression for the
Regulator Pertormance Lndex. >Decound, Lile Limitacivus vl
state-variable feedback are not fully known; e.g., can the
designer be sure that he will always get a satisfactory
design by feeding back all the state variables? Third,
the connections with conventional, frequency-domain
design techniques have not been established. 1t should
be noted that these three comments have been frequently
made in discussions of the relative merits of state

variable techniques and conventional techniques.
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The rebuttal to the first criticism has usually
made use of the concept of modeling. 1In brief, the model
is the form that the compensated system would have to
assume in order to achieve the lowest possible value of
the chosen Performance Index. Frequently, design con-
straints permit only enough freedom to achieve a value
which is greater than the lowest possible value. Modeling
is useful when the choice of the model specifies the
Performance Index, since then the designer has a means
of selecting the Performance Index. For the Regulator
Problem very little attention has been given to develop-
ment of models, perhaps because the integrand of .Jr in
(3-1) becomes quite complicated when the substitution
u =k'x is made. Some work has been done for the case

_______ . 2 Vo) s~ mam -l o
T ALY [SY ¥

poles of the optimal system approach a Butterworth
configuration (Kalman 1964, p. 58).

The second criticism - that of the lack of knowledge
of the limitations of state variable feedback - has been
partly clarified by showing that the use of state variable
feedback allows complete control over the poles of the
system but does not affect zeroes. What remains to be

given is a more complete treatment of the techniques
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for including zeroes in a meaningful way in the Regulator
Problem.

The third criticism is of particular importance
for the Regulator Problem because the form of the optimal
system is known. This struéture could serve as a start-
ing point for applying, for example, the minor loop design
techniques to the Regulator Problem. The subjects of
sensitivity and steady-state error constants also remain
to be considered.

The Servomechanism Problem was given a briefer
treatment than the Regulator Problem because once the
latter is understood, the former is easily grasped. All
of the comments given above apply equally well to the
Servomechanism Problem. In one sense the Servomechanism
Problem has a closer appeal to automatic control engineers
since the reference input is an explicit part of the
problem. Note, however, that these engineers usually use
the response of the system to a step input as a reliable
guide to the merit of the design; for this particular
reference input the Servomechanism Problem reduces to the
Regulatof Problem, as was shown in Chapter IV.

In conclusion, the two basic problems considered

in the thesis have been carefully defined and an attempt




—————————

59

has been made to treat each one as an individual problem,
to relate each one to the other, to relate both to other
design techniques, and to point out the areas where

further investigation is required.
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